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Abstract—Diabetic retinopathy is a serious complication needing 

prompt diagnosis and medication to avert vision loss. Lesions 

caused by the condition are difficult to track because they are 

hidden behind the eye’s structure in small and subtle forms. To 

extract relevant features, we created a robust pipeline using 

multiple preprocessing techniques, image segmentation 

architecture (DR-UNet) with atrous spatial pyramid pooling, and 

an attention-aware deep learning convolutional network with 

different modules based on ResidualNet. Empirical results show 

that our framework has segmentation accuracies of 87.10% 

(intersection over union) and 84.50% (dice similarity coefficient). 

Moreover, classification performance of 99.20% provided better 

results than existing schemes, as reinforced by the smooth 

convergence of training/validation loss and accuracy. This study 

has the potential to supplement traditional diagnosis to identify 

better the ailment in its early and advanced stages. 

Keywords—attention-aware DCNN, atrous spatial pyramid 

pooling, blindness, fundus images, lesion detection, ophthalmology 

I.   INTRODUCTION 

Excessive sugar levels in the blood cause severe harm to 
body organs resulting in life-threatening illnesses if left 
unchecked. Diabetic retinopathy (DR) is a medical disorder 
affecting people with diabetes.  It can be either mild (DR-NP, 
non-proliferative) or severe (DR-P, proliferative). At first, a 
person with DR-NP experiences blurred vision. However, as 
the condition progresses, new blood vessels (BV) emerge in 
the retina, further debilitating visual acuity. The complications 
from these leaks and bleeding trigger DR. At its worst, the 
disease causes complete obstruction of the BV, manifesting as 
various lesions. The most noticeable lesions are 
microaneurysms, the earliest indications of DR, and appear as 
little scattered dots with a round shape on fundus images, as 
depicted in Fig. 1(a) and Fig 1(b). At present, an 
ophthalmologist manually evaluates the scans to spot the 
abnormalities. An automated prognosis system can replace the 
technique to determine conditions rapidly and reliably. Both 
supervised and unsupervised approaches have been explored 
in the pursuit of highly accurate outcomes. Deep learning 
(DL) techniques are applied at the pixel level to recognize and 
segment retinal pictures. Convolutional neural networks 

(CNN) are used in deep learning. They are made up of 
interconnected ‘neurons’ of multiple layers and have 
widespread utilization in pattern recognition and image 
processing. 
 

 

Fig. 1. Diabetic retinophaty cases (a & b) and normal retina (c) [1]. 
 

Fundus image-based pathological screening is an emerging 
study area in modern healthcare diagnostics. Experts in 
computer vision are starting to pay significant attention to the 
automated detection of DR. Since the segmentation’s output is 
critical to classification success, it has been the subject of 
numerous papers. In their research, authors [2] outlined a 
method for accurately segmenting images of the retinal fundus 
in two phases through pre and post-processing of images via 
maximum principal curvature. Using mathematical 
morphology, proponents [3] segmented BV to assess and 
extract retinal image features using a smoothing technique. It 
effectively suppresses background information, while a K-
means clustering algorithm improves the image quality. The 
method is compared to other alternative solutions achieving 
95.10% precision evaluated on the DRIVE dataset. Scientists 
[4] introduced a segmentation framework to distinguish BV 
based on extended descriptions to address the difficulties of 
variations with thin and elongated morphologies. Its model 
training is done so that parameters are automatically learned 
by a support vector machine (SVM). The work by [5] aims to 
apply enhancement techniques to quantify the properties of 
optic BV. Partitioning was accomplished using three essential 
processes such as multi-scale analytics (MA), morphological 
geometry (MG), and Gaussian methods (GM). MG excels in 
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pinpointing the delicate intricacies of blood veins. If combined 
with image transformation and discriminant analysis, the MA 
was optimal because it can distinguish between large and 
small arteries without any background noise. At the same 
time, GM was potent in identifying thick vessels. Researchers 
[6] demonstrate automatic retinal vascular splitting using c-
means (fuzzy) segmentation and intensity ranges. Restricted 
dynamic histogram normalization raised the contrast of retinal 
scans. At the same time, mathematical morphology 
approaches and matching filtering sequences through Frangi & 
Gabor filters boosted the clustering. The initial blood vein 
network is extracted based on a genetic algorithm utilizing an 
extended spatial fuzzy c-means scheme. An integrated level 
set enhances the segmentation, achieving an accuracy of 
96.10%. A solution that shortens the amount of time needed 
for calculations while maintaining high accuracy and 
improving sensitivity compared to the Frangi method is 
presented by [7]. During its process, they tried to prevent 
potential problems (e.g., specular reflexes) using two open 
access (DRIVE & STARE) datasets with 93% and 95% 
precisions. 

According to the literature, there are three popular 
segmentation schemes such as watershed transform (WST), 
super pixels (SP) & active contour (AC). The WST is a known 
and robust unsupervised algorithm capable of handling many 
image partitioning challenges. However, in some instances, it 
tends to excessively segment the original images as the 
technique is sensitive to noise and contrast leading to incorrect 
results [8]. SP enables image over-segmentation by arranging 
pixels into monolithic clusters based on derived characteristics 
(e.g., texture, intensity & other related features). Each pixel of 
the same region is represented on a map considering both local 
and nonlinear deformations. This process allows efficiency by 
minimizing mistakes of assigning wrong labels in making 
super pixel-based features with low computation and memory 
usage [9]. Conversely, AC is good at acquiring regions of 
interest (ROI) in medical images. It uses edge and region-
based models to locate edge information, set the approximate 
shape boundaries, and compute sub-regions based on optimal 
fitness [10], respectively.  

There are multiple papers on identifying and categorizing 
DR in fundus images. For instance, [11] demonstrates an 
alternative morphological function that emphasizes optical 
disc (Opt-D) recognition. They attained specificity and 
sensitivity of 88% and 94%. Authors [12] offer unsupervised 
retinal Opt-D histogram-based template fitting detection 
techniques comprising three phases: fine-tuning, centroid, and 
boundary identification. Other hemorrhage research has been 
conducted without segmentation or ROIs, utilizing retinal 
characteristics as features and classified by partial least square 
[13]. Data scientist [14] presented an iterative technique for 
enhanced BV detection utilizing Opt-D algorithms in five 
steps, with fovea localization as one of its strengths. A 
machine learning approach aiding DR identification was 
developed by [15]. They validated the results from thousands 
of eye scans (MESSIDOR dataset) with the macula as the 
primary priority. A kappa (kp) value compared two out of 

three doctor’s in grading DR against the machine learning 
performance with a mean average accuracy of 90%. With the 
same data, researchers [16] proposed a four-layered CNN 
starting with preprocessing, transformation, and normalization 
of input images. The effect was a quality improvement in DR 
grading accomplished via clustering with accuracy of 82%. 
Finally, the probe of [17] devised a hybrid method to develop 
a hybrid pipeline using Hough transformation and CNN to 
detect fluids (exudates) leaking from BV. It calculates the 
categorization using pixel probabilities. The reliability of their 
assessments based on three public datasets (DiaretDB0, 
DiaretDB1 & DrimDB) averages 98% accuracy. Several 
models used deep learning (neural networks) for DR 
diagnostics based on recent publications. Attention-aware 
mechanism [18], multi-task [19] & self-attention CNNs [20], 
and auto encoders [21] provides optimized processes 
representation sharing during modeling, thus improving the 
overall rate of classification. Moreover, it includes histogram 
equalization and sparse filters that automatically extracts 
different features from fundus images. Other benchmarks [22] 
utilize long short-term memory networks (LSTM) to enhance 
classification performance further. Parameter reduction was 
explored by [23] by modifying the residual pathways of 
networks via sampling modules for challenging datasets.  

Each method stated in the literature has its advantages but 
we are confident that there are still gaps in the exactitude of 
early lesion detection. In the advanced stage of DR, noticeable 
vascular growth markings are conveyed easily by the current 
state-of-the-art image processing techniques. However, this is 
not the case for mild conditions, which may not have enough 
signs and proliferations of the eye’s vascular abnormalities 
using only the naked eye. As a contribution to science, our 
proposed novel pipeline comprises extensive preprocessing 
techniques; enhanced segmentation algorithms with atrous 
spatial pyramid pooling (ASPP) for extracting the maximum 
lesion features efficiently, and a modularized attention-aware 
deep CNN architecture (DCNN) for DR classification. This 
study can assist ophthalmologists in reliably predicting its 
progression at the earliest possible time to give patients the 
necessary and proper treatment to prevent permanent 
blindness. 

II.   METHODOLOGY 

A. Datasets and Preprocessing 

We collected 388 high-resolution retinal images divided 
into two equally independent groups. The first set contains 
194 data exhibiting DR (DiaretDB0 & DiaretDB1), while the 
other includes 25 healthy eyes. Due to an imbalance ratio of 
7:1, we acquired 169 additional non-DR images from various 
sources [24] to solve these vast discrepancies. In order to 
improve training and validation of deep learning models, it is 
crucial to have a well-balanced dataset to prevent under and 
over-fitting during training. Moreover, all images are 
converted to 1440 x 900 pixels to compensate for size 
difference then normalized into 512 x 512 pixel images after 
background cropping. Fig. 2 shows excerpts of sample images 
annotated by medical experts. 
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Fig. 2. Excerpts of fundus images showing examples of diabetic retinopathy (a – i) and normal eye (j) [24]. 

B. Data Augmentation 

Inadequate medical images for training can make it hard to 
improve pattern recognition as it affects how well a machine 
learning model can perform. Therefore, data expansion is 
necessary to increase the size of the dataset by artificial means 
to achieve robustness and generalization. We applied 
geometric transformations such as flipping (vertical & 
horizontal) and rotations (45 & 135 degrees) to produce 
additional 1552 synthetic data with a total of 1940 images, 970 
for each class. Through this process, it can help improve the 
robustness and generalization ability of the model to make 
accurate predictions. Lastly, we divided the dataset into 
training (80%), testing (20%), and excluded ten early case DR 
samples using a 10-fold cross-validation. 

C. Color Adjustments for Maximum Feature Extraction 

When processing images, color calibration is vital since it 
enriches the visual quality and suits a specific context or 
application. Our strategy is to convert each image to grayscale 
to reduce data size to cut computation time by a factor of 
0.2815 using the values red (R) = 0.27, green (G) = 0.56, and 
blue (B) = 0.17 (Fig. 3). Moreover, this also increases training 
time efficiency during test runs. 
 

 
Fig. 3. Sample grayscaled fundus images, normal (a) and abnormal (b & c). 
 

It is obvious to give emphasis to the red channels to 
highlight blood vessels and clots but this is not the case  
 

 

according to our observations. Instead, we prioritized the 
green colors over the red and blue channels with a second 
adjustment of R = 0.28, G = 0.57, and B = 0.15 as it reveals 
more details. Fig. 4 illustrates the comparative color shift 
prioritization. 
 

 
 

Fig. 4. Prioritizing the green channel produced finer and greater information  
 (b)  than the other channels (a & c). 

D. Enhanced Segmentation Technique 

Retinal image segmentation is an indispensable process 
that helps diagnose DR. It locates specific areas that are hard 
to see otherwise. This study aims to divide the visuals into 
pixels or regions concerning the optic disc, BV, lesions 
(hemorrhages), exudates, and microaneurysms using semantic 
segmentation. We modified the U-Net architecture to address 
this dilemma because the original design was ineffective in 
our segmentation contexts after several tests.  

Our framework comprises three major parts: encoder, 
bottleneck, and decoder (Fig. 5) similar to the article by [25] 
but with additional mechanics. The encoder with four blocks 
(BLK) is on the left, with the first receiving the input images 
and the subsequent BLK receiving the previous output with a 
lower subsampled resolution. Its initial BLK comprises three 
convolutions, the first two layers having 32 feature maps (FM) 
and 64 in the third. The same structure is observed in the 
second unit but with 64 and 128 FM on its layers while the 
remaining BLKs (3rd and 4th) offer only two convolutions  
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Fig. 5. Proposed DR-UNet for lesion segmentation for detection of diabetic retinopathy in fundus images with three parts (encoder, bottleneck & decoder). 
 

while doubling subsampled FM at 128 and 256. A Maxpooling 
(MXP) operation is executed at the end of each BLK to 
decrease the input’s sample size while keeping most details. 
Before each MXP layer, the preservation of a duplicate copy 
connects the contraction to the expansion path leading to 
precise segments. 

The decoder on the right side mirrors the encoder but 
includes an upsampling (2D) at the end. Its feature map 
decreases by half from the previous block during each 
sampling stage. Furthermore, the red arrows (Fig. 5) recreate 
the FM previously stored before each maximum clustering 
layer in each encoder block and compare these with the 
decoder’s oversampled outputs. We applied subsampling at 
the end of the decoder block to improve the ability to detect 
retinal hemorrhages, further enhanced by concatenating the 
input image with the network results. To complete the process, 
a final convolution (1 x 1 kernel) and a sigmoid activation 
function compute the maps’ outcomes. 

In the middle of the architecture is a bottleneck connecting 
the two pathways with two convolutions (3 x 3 kernel, MXP = 
2 x 2 kernel & stride = 2) for enriching and easing FMs. 
Rectified learning unit (RELU) followed by batch 
normalization (BN) is a standard configuration used to 
stabilize network weights and avoids gradient degradation. We 
also introduced ASPP to improve the training speed further for 
a large dataset. It increases the receptive field for capturing 
finer details of the input without raising the number of  
 
 

 

parameters leading to segmentation efficiency. 

E. A Modified Attention-Aware Deep Convolutional Neural 

Network Architecture 

The ability of a model to zero in on specific parts instead 
of equally treating the entire image makes attention-aware 
deep neural networks invaluable. Certain features are 
undoubtedly more crucial than others in identifying DR, which 
is particularly useful. Our network was built of three sections: 
segmentation adjustment (SA), lesion-conscious (LC), and DR 
detection sub-networks based on ResidualNet (RNet) and 
MaskRCNN [26].  

The SA identified the overall segmentation fitting with 
pre-trained weights on ImageNet initialized on RNet to create 
the base network. Each selection was subtly adjusted for 
contraction to prevent over segmentation that may cause 
irregularities. Then, the LC generates mask images to identify 
different lesions existing in retinal images via quadrant search. 
As part of this section, we used non-maximal suppression to 
select the most objective bounding box with the highest 
accurate scores from among several predicted ones. The 
process continues until the completion of all boxes. 
Ultimately, the DR classifications are generated thru 
combined characteristics from SA and LC. The pre-trained 
DR-based network fused with the attribute extractor of the LC 
collects a more detailed and granular representations, 
conserving needed image information. Fig. 6 exhibits the 
classification pipeline. 
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Fig. 6. An attention-aware deep convolutional neural network with three sub- 
 networks for detection of diabetic retinopathy. 

F. Evaluation Metrics 

To assess the quantitative reliability of segmentation, we 
used intersection over union (IoU) that calculates the ground 
truth (G) and the algorithm’s results (R) by dividing the 
intersection of two datasets.  Another measurement is the Dice 
similarity coefficient (DSC) equivalent which measures the 
overlaps of two datasets by dividing the sum of the first and 
second sets with values ranging between 0 and 1.  A value of 1 
means it is perfectly identical; otherwise, it is not. Equations 1 
and 2 display the formulas: 
 

��� =  
| � ∩ 	 |

| � | +  | 	 | − | � ∩ 	 |
 

 

�� =  
2 | � ∩ 	 |

| � | + | 	 |
 

 
 For classification measurements, we evaluated the performance 
of the deep learning architecture in terms of accuracy, precision, 
sensitivity, and specificity. These are standard benchmarks in 
machine learning, as summarized by true positives (TP) and true 
negatives (TN), false positives (FP), and false negatives (FN) denoted 
in Equations 3 to 6:  
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III.   RESULTS 

We conducted the experiments using the fastest computer 
available with a Core-i9 processor (8 cores, 3.60 GHz, 16 MB 
cache, 16 threads), 64 GB RAM, and a graphics processing 
unit (RTX390Ti, 1.86 GHz & 24 GB). Keras and TensorFlow 

libraries allowed the creation of the models in a structured and 
efficient manner. The succeeding section outlines the results. 

A. Attention-Aware DCNN’s Hyperparameters Optimization 

For a model to work effectively, adjusting the 
hyperparameters is essential. These settings unlike parameters 
are set before modeling. We utilized a Bayes search 
optimization technique to lessen the time-consuming process 
of manual configuration through trial and errors. Table I 
shows the fine-tuned options. 
 

TABLE I. ATTENTION-AWARE DCNN’S OPTIMIZED CONFIGURATIONS 
 

Hyperparameters Settings 

Batch size 
Decay 
Environment 
Epoch 
Loss 
Learning rate 
Optimizer 
Shuffling 

16 
0.001 per epoch 

GPU 
100 

Cross-entropy (Binary) 
0.001 

ADAM 
Per epoch 

B. Segmentation Performance 

Table II compared the results of our modified 
segmentation framework (DR-UNet) with the original U-Net 
and Res-UNet using 50 random images with different 
severities of DR. The results show that DR-UNET 
outperforms the other models with IoU and DSC mean scores 
of 0.871 and 0.845 in multiple folds, respectively. This 
demonstrates that our technique can represent identified 
lesions accurately with reference to the ground truth. Fig. 7 
provides examples of the performance of our networks versus 
the ground truth. 

 

TABLE II. COMPARATIVE SEGMENTATION EVALUATIONS 
 

K-

fold 

DR-UNET U-NET RES-UNET 

IoU DSC IoU DSC IoU DSC 
1 0.863 0.850 0.721 0.778 0.803 0.818 

2 0.882 0.849 0.713 0.743 0.799 0.815 

3 0.861 0.843 0.749 0.734 0.813 0.809 

4 0.863 0.842 0.811 0.789 0.821 0.813 

5 0.871 0.848 0.789 0.812 0.834 0.814 

6 0.872 0.853 0.748 0.803 0.817 0.821 

7 0.874 0.847 0.758 0.787 0.818 0.820 

8 0.861 0.842 0.748 0.791 0.809 0.818 

9 0.889 0.839 0.801 0.813 0.818 0.826 

10 0.878 0.841 0.812 0.812 0.805 0.821 

Mean 0.871 0.845 0.765 0.786 0.813 0.817 
 

 
Fig. 7. Segmentation comparison of ground truth vs. DR-UNet. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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C. Classification Performance 

Table III gauged the performance of our framework to 
various methods such as conventional DL, ensembles, lesion 
isolation, multi-sieving, modified AlexNet, circular Hough-
CNN, and Hessian matrix with altered CNN features. Our 
proposed pipeline obtained accuracy, precision, sensitivity, 
and specificity based on the results with 0.992, 0.989, 0.994, 
and 0.989, respectively. The results had a marked average 
accuracy increase of 5.64% among existing methods. 
 

TABLE III. COMPARATIVE PERFORMANCE AGAINST DIFFERENT TECHNIQUES 
 

Approach AC PR SE SP 

Conventional DL [27] 0.861 0.790 0.840 0.820 

Ensembles [28] 0.869 0.803 0.881 0.855 

Lesion isolation [29] 0.920 0.820 0.88 0.831 

Multi-Sieving [30] 0.961 0.814 0.978 0.921 

Modified AlexNet [31] 0.966 0.953 0.953 0.973 

Circular Hough – CNN [17] 0.985 - 0.996 0.982 
Hessian matrix + CNN with 
squeeze, excitation & 
bottleneck [18] 

0.987 0.972 0.996 0.982 

Proposed DR-UNet with 
ASPP + Attention-aware 
DCNN 

0.992 0.989 0.994 0.989 

 

A confusion matrix in Table IV shows that DR detection 
performs better than normal eye categorization, but with only 
one error difference. 
 

TABLE IV. CLASSIFICATION CONFUSION MATRIX  
(TRAINING = 1930, TESTING = 386 WITH HOLDOUT = 10) 

 

 Normal DR 

Normal 191 2 

DR 1 192 

 

 We also tested ten fundus images exhibiting early signs of 
DR to quantify if our model can empirically distinguish the 
abnormality.  The machine identified nine out of ten instances 
of early DR, illustrated in Fig. 8. 
 

 
Fig. 8. The amplified segmentation technique and attention-aware DCNN  

 recognized eary signs of DR (a-i) except for (j). 

D. Model Training-Validation Loss and Accuracy  

 As shown in Figure 9(a), both the training and validation 
loss decreased steadily during the initial stages of the iteration 
process. These values eventually reached a stable point at the 
85th epoch, yielding impressive results. It suggests that our 
model is effectively fitting the training and validation data. On 
the next graph, Figure 9(b) reveals an incremental increase in 
both training and validation accuracy for each epoch. This 
demonstrates the ability of our proposed DCCN to learn and 
extract important features from fundus images for diabetic 
retinopathy classification. Additionally, the convergence of 
the two lines in both graphs indicates that our modified neural 
network is neither under nor overfitting. 
 

 
Fig. 9. A gradual convergence are achieved indicating no signs of under or  

 overfitting. 

IV.   DISCUSSIONS 

 This study introduced an enhanced segmentation technique 
and attention-aware DCNN for identifying DR. Based on 
benchmarks, our DR-UNet with ASPP mechanism 
outperforms standard U-Net and Res-UNet architecture with 
IoU and DSC values of 0.871 and 0.845 against the ground 
truths - a mean improvement of 0.082 and 0.043, respectively.  
We also verified the robustness of our classification model 
based on combined training and highly augmented datasets. 
Compared with different techniques, our proposed network 
attained higher performance on various metrics by introducing 
multiple sub-networks - a proven effective strategy for high-
level attribute abstractions (accuracy = 99.20%). Furthermore, 
the model’s exceptional performance was validated by its 
capability to detect DR’s early signs according to the 
validation sets. Lastly, training/validation loss and accuracy 
plots exhibited a slow but gradual and smooth converging 
learning rate. Our research has made significant progress in 
automated medical image processing, building on the work of 
the advancement in data science [32 – 45].  
 While conducting this research, we encountered a common 
challenge of working with noisy and low-quality fundus 
images that can lead to segmentation and classification errors. 
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Despite these obstacles, we did not examine methods for 
improving image quality, such as ‘image dehazing’ and spatial 
filtering. 

V.   CONCLUSIONS AND FUTURE WORKS 

 DR is a severe consequence of diabetes that can cause 
significant vision loss or even blindness if not detected and 
treated properly. One of the main reasons the eye’s 
abnormality is hard to diagnose is that it does not often 
indicate noticeable symptoms. Consequently, affected 
individuals become aware only once it progresses to the 
advanced stage. Multiple attempts have been conducted to 
automate the prognosis using various artificial intelligence-
based approaches. However, there is still room for 
improvement. We developed two strategies to boost lesion 
detection in DR. Primarily, an enhanced segmentation 
framework (DR-UNet) with the integration of an ASPP block 
that extracts more relevant information and discards irrelevant 
regions from the fundus images. Nevertheless, we observed 
that it is prone to over-segmentation. To compensate for this 
dilemma, we incorporated a sub-network in our attention-
aware DCCN classifier to contract the lesion segments before 
classification for adjusted fitting. More importantly, the stacks 
of RNets with pre-trained base, segment contraction, lesion-
conscious (with MaskRCNN), and concatenation networks 
proved to be robust in DR’s identification, including on its 
onset.  
 Our research significantly contributed to the medical 
image prognosis to identify DR automatically and non-
invasively. Artificial intelligence can be a valuable tool in the 
healthcare industry. However, it should be considered as a 
supplement to human expertise. Instead, it is most effective 
when combined with traditional healthcare practices to 
provide individuals with the most comprehensive care 
possible. By consolidating the strengths of both approaches, 
we can create a healthcare system that is more efficient and 
effective at meeting the patients’ needs. The proponents intend 
to classify DR based on severity and design a better 
architecture in the future. 

DATASETS LINKS 

 DIARETDB0 (https://bit.ly/3H4guBE), DIARETDB1 
(https://bit.ly/3J9O8bO), FIRE (https://bit.ly/3Ja3oFL), and 
DRIVE (https://bit.ly/3J4PiFI). 
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