

Book Chapter

Teaching Medicine with Generative Artificial Intelligence (GenAI): A Review of Practices, Pitfalls, and Possibilities in Medical Education

[©] Manuel B. Garcia ^a*, Raquel Simões de Almeida ^b, Dharel P. Acut ^c, Rui Pedro Pereira de Almeida ^d, Precious S. Garcia ^e, Eleonora Stefani ^f

- ^a Educational Innovation and Technology Hub, FEU Institute of Technology, Philippines
- ^b School of Health, Polytechnic of Porto, Portugal
- ^c College of Education, Cebu Technological University, Philippines
- ^d Medical Imaging and Radiotherapy Department, University of Algarve, Portugal
- ^e College of Nursing and Health Sciences, Jose Rizal University, Philippines
- f Department of Medicine, University of Padova, Italy

* Correspondence:

Manuel B. Garcia, University of the Philippines Diliman and FEU Institute of Technology. mbgarcia@feutech.edu.ph

How to cite this article:

Garcia, M. B., de Almeida, R. S., Acut, D. P., de Almeida, R. P. P., Garcia, P. S., & Stefani, E. (2025). Teaching Medicine with Generative Artificial Intelligence (GenAI): A Review of Practices, Pitfalls, and Possibilities in Medical Education. *Teaching in the Age of Medical Technology*. https://doi.org/10.4018/979-8-3373-1519-5.ch005.

Article History:

Received: 29 Jan 2025 Revised: 24 Mar 2025 Accepted: 12 May 2025 Published: 12 Jun 2025

Abstract:

Once confined to science fiction and speculative futures, generative artificial intelligence (GenAI) has swiftly entered the lecture halls of modern medical education. Despite its expanding use, a synthesis of its implementation, limitations, and educational value remains underexplored. This review aims to critically examine current applications, identify pedagogical pitfalls, and delineate future trajectories for GenAI in medical training. Key innovations include AI-driven content generation tailored to curricular benchmarks, automated assessments with real-time diagnostic feedback, and immersive virtual patient simulations replicating complex pathophysiologies. Additional advances span multilingual knowledge translation, anatomically precise surgical training environments, and adaptive learning systems powered by intelligent tutoring frameworks. As discussed herein, GenAI holds transformative potential for advancing clinical competence in an evolving medical landscape—provided its integration is evidence-based, ethically sound, and educationally coherent.

Keywords:

Artificial Intelligence, Generative AI, Medical Education, Medical Training, Medicine, Large Language Models, ChatGPT

INTRODUCTION

The journey of becoming a physician is often compared to drinking from a firehose—a vivid metaphor that fails to mention that the hose also occasionally sprays Latin terminology, unexpected ethical dilemmas, and a growing existential crisis. This lighthearted analogy does not even capture the sheer volume of information medical students must absorb, as it only scratches the surface of what truly makes medical education both rigorous and essential. Beyond the endless stream of lectures, clinical rotations, and late-night study sessions fueled by caffeine and sheer determination, medical training is an intricate process that shapes the very mindset and resilience of future physicians. More importantly, medical education is not simply about knowledge transfer but about cultivating clinical reasoning, ethical judgment, and the ability to navigate the complexities of patient care (Kirch & Sadofsky, 2021; Ogden et al., 2023; Yazdani & Abardeh, 2019). The effectiveness of medical training depends not only on what is taught but also on how it is taught. Therefore, traditional methods such as didactic lectures and rote memorization, while still valuable, are increasingly being supplemented by more dynamic, student-centered pedagogies designed to enhance engagement and retention (Buja, 2019).

As the landscape of medical education evolves, instructional technologies have emerged as powerful tools to bridge the gap between traditional learning and modern medical practice (Chowdhury et al., 2024; Garcia, de Almeida, et al., 2025). For instance, a systematic review of immersive technology applications highlights empirical evidence demonstrating their effectiveness in improving practical and procedural skills among medical students and professionals (Tang et al., 2022). The review further emphasized that immersive technologies, including augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR), are widely implemented in surgery and anatomy training to overcome limitations in cadaver availability and the associated financial, ethical, and supervision challenges that are particularly significant in neuroanatomy. In another systematic review, McGee et al. (2024) underscored the use of digital tools in teaching clinical skills as a viable alternative to traditional face-to-face instruction. Their findings suggest that these technologies can enhance educational outcomes, improve student satisfaction, and potentially reduce costs. This shift reflects the broader digital transformation in medical education, where technology-driven approaches are reshaping how clinical training is delivered, assessed, and scaled to meet the evolving needs of healthcare professionals (Almeida, 2023). With these advancements, the question is no longer whether technology should be integrated into medical education but how can it be leveraged effectively to enhance learning without compromising the critical human elements of medicine.

LITERATURE REVIEW

The Role of Artificial Intelligence in Medical Education

Medical education has long embraced technological advancements to enhance learning, from early computer-assisted instruction to modern immersive simulations. However, no

innovation has generated as much excitement and apprehension as Artificial Intelligence (AI). At its core, AI refers to computational systems capable of performing cognitive tasks typically associated with human intelligence, such as pattern recognition, reasoning, decision-making, and problem-solving. The conceptual foundations of AI can be traced back to Alan Turing, who proposed that machines could mimic human intelligence (Jackson et al., 2024). This vision has since evolved into sophisticated algorithms capable of analyzing vast datasets, adapting to learner needs, and transforming medical instruction (Acharya et al., 2023). Recent literature reviews highlight its expanding role across various stages of medical training, specialties, and instructional applications (Gordon et al., 2024). The integration of AI into medical training aligns with broader global initiatives, as organizations like the World Health Organization (WHO) recognize AI-driven technologies as critical components of modern healthcare systems (Zarei et al., 2024).

With medical students expressing a strong eagerness to acquire competencies in the use of AI in medicine (Krive et al., 2023), the need for structured guidance on its effective integration into medical education has become increasingly important. Garcia, Arif, et al. (2024) addressed this need by offering practical strategies and actionable insights for seamlessly incorporating AI into medical training. Key among their recommendations is cultivating a culture of innovation to better prepare future physicians to leverage AI-driven advancements in diagnostics, treatment planning, and medical research. This approach is particularly crucial as AI continues to evolve beyond automation, now enabling more sophisticated applications such as real-time decision support (Elhaddad & Hamam, 2024), predictive analytics (Dixon et al., 2024), and personalized learning (Feigerlova et al., 2025). Unless we expect physicians-in-training to learn from textbooks that still refer to AI as science fiction, these growing technical capabilities necessitate a parallel evolution in medical education to ensure thoughtful integration and evaluation. With each new technological advancement, the trajectory sets the stage for the next generation of AI-driven innovations that will further redefine the landscape of medical education.

Generative AI for Teaching and Learning in Medicine

The emergence of Generative AI (GenAI) marks a new era in medical education, where AI is no longer just an analytical tool but an active creator of educational content, clinical scenarios, and personalized learning pathways (Cervantes et al., 2024; Stretton et al., 2024). GenAI refers to AI systems that can autonomously produce text, images, code, simulations, and other forms of content by learning patterns from vast datasets. A key component of GenAI is large language models (LLMs), which are designed to process and generate human-like text. These models enable applications such as AI-powered tutoring, automated case studies, and interactive clinical reasoning exercises. Some examples include OpenAI's *ChatGPT*, Google's *Gemini*, Anthropic's *Claude*, and the newest addition, *DeepSeek*. Since the popularization of GenAI in late 2022, various studies have explored its role in medical education, assessing its impact across undergraduate (Hale et al., 2024) and postgraduate (Janumpally et al., 2024) training. While it is too early to draw definitive conclusions, early implementations of GenAI in medical and health education indicate significant promise in reshaping pedagogical methodologies (Thomae et al., 2024).

Researchers such as Saleem et al. (2024) described it as an innovative heutagogical tool that fosters self-directed learning in medical education. This concept is put into practice through AI-driven platforms that craft personalized study strategies, analyze student progress to refine resource recommendations, and offer on-demand feedback (Garcia, Rosak-Szyrocka, et al., 2025). In addition to personalized learning, Boscardin et al. (2024) underscored the ability of GenAI to simulate real-world clinical scenarios. This setup allows students to refine their diagnostic reasoning, decision-making, and communication skills, which are key competencies for effective healthcare practice. Han et al. (2024) also emphasized that GenAI can assist educators by automating content development, generating assessment questions, and enhancing curriculum planning. With these capabilities, GenAI allows educators to focus more on student engagement and higher-order instructional strategies rather than spending excessive time on administrative tasks. A growing body of literature (e.g., Aster et al., 2024) reinforces these insights by documenting the expanding role of GenAI in supporting both faculty and student learning.

The Promise and Pitfalls of LLMs and GenAI in Medical Training

While advancements in GenAI and LLMs offer exciting possibilities, their increasing use also raises important concerns regarding implementation, reliability, and ethical considerations. A scoping review by Preiksaitis and Rose (2023) identified key challenges, including academic integrity, data accuracy, and the risk of AI dependence undermining critical thinking and deeper learning. However, while these concerns are frequently discussed, they are often emphasized disproportionately compared to the actual benefits and successful implementations of these technologies in medical education – or vice versa. Many studies outline the risks, but fewer offer balanced discussions on the practical applications, instructional benefits, and adaptive strategies that educators are already employing to integrate AI effectively. This imbalance presents a critical research gap where discussions surrounding GenAI and LLMs often focus on their theoretical pitfalls while overlooking real-world implementations that demonstrate their potential (Acut et al., 2025). There is a need to stop treating AI in medical education as either a miraculous teaching assistant or an ominous threat to academic integrity. A more balanced and comprehensive discussion is warranted—one that does not just highlight what could go wrong but also explores what is already going right and how we can refine best practices moving forward.

MAIN FOCUS OF THE CHAPTER

This chapter takes a thoughtful dive into the practices, pitfalls, and possibilities of GenAI in medical education. It aims to examine how educators are currently integrating AI-powered tools into teaching while also analyzing the challenges that come with its adoption. By balancing success stories with cautionary tales, this chapter seeks to bridge the gap between theoretical excitement and real-world implementation. More importantly, this chapter looks ahead to the future possibilities of GenAI in medical training by exploring how it could evolve from an efficient assistant to an indispensable partner in education. These insights can provide future physicians, medical educators, healthcare policymakers, and academic institutions with a roadmap for making

GenAI a trusted ally rather than a questionable experiment. Thus, the significance of this chapter is in its effort to steer away from extremes, neither glorifying GenAI as the ultimate teaching savior nor condemning it as a disruptive force destined to erase human wisdom. Instead, it takes a grounded, balanced approach to show how AI tools can enhance medical education while keeping ethics and critical thinking at the heart of learning. Table 1 summarizes key practices and pitfalls that serve as a basis for future possibilities in AI-driven medical education and training.

Table 1. Summary of Practices and Pitfalls of AI Integration in Medical Education

Application	Practice	Pitfall	References
Automated Content Generation	Automate lecture slides, quizzes, and notes for medical courses.	Risk of generating inaccurate or overly generic content.	(Cox et al., 2024; Dao et al., 2021; Giannakos et al., 2024; Liu, 2025)
AI-Generated Assessments and Feedback	Offer instant evaluation and promote iterative learning.	Assessments may be biased or fail to align with educational standards.	(Khojasteh et al., 2025; Nguyen, 2024; Xia et al., 2024)
Virtual Patient Simulations	Enhance hands-on training with lifelike patient interactions.	It may lack the complexity and unpredictability of realworld cases.	(Cook, 2024; Guraya, 2024; Potter & Jefferies, 2024; Vaughn et al., 2024)
Virtual Anatomy and Surgical Training	Offer immersive, hands-on learning in a controlled virtual environment.	Oversimplify anatomical complexity or fail to replicate tactile feedback.	(Dai & Ke, 2022; Elendu et al., 2024; Lin & Chen, 2024; Sun et al., 2024)
Language Translation and Simplification	Increase accessibility for non-native speakers and underprepared students.	Loss of intended meaning or accuracy in critical medical concepts.	(Genovese et al., 2024; Lin et al., 2023; Naveen & Trojovský, 2024)
Medical Research Assistance	Reduce the time and effort required for academic research.	Risks introducing inaccuracies, bias, or ethical concerns in research	(Dixon et al., 2024; Hossain et al., 2023; Serrano et al., 2024)
Adaptive Learning Systems	Improve individual learning outcomes by tailoring content.	Risks of over-reliance on AI, which may limit independent learning	(Capuano & Caballé, 2020; Kabudi et al., 2021; Martin et al., 2020)
Intelligent Tutoring System	Makes learning more accessible and offers on-demand assistance.	Undermine the vital role of human instructors and nuanced teaching.	(As'ad, 2024; Garcia & Garcia, 2023; Yang & Shulruf, 2019)

METHODS

The methods employed in this chapter combine an integrative literature review with reflective analysis grounded in scholarly expertise. Specifically, the authors adopted a hermeneutic approach, drawing upon their disciplinary knowledge in medical education and educational technology to critically synthesize existing research and contextualize emerging themes in generative AI applications. This dual-method strategy anchored in expert interpretation and systematic examination of contemporary literature enabled a comprehensive exploration of pedagogical practices, instructional affordances, and ethical considerations related to GenAI in

medical training. By merging evidence-based insights with domain-informed perspectives, this methodology ensures both theoretical rigor and practical relevance in evaluating the transformative potential of AI-driven tools in medical education.

A targeted and purposive search was conducted across PubMed, Scopus, and IEEE to capture a broad yet focused range of perspectives. The search was conducted using Boolean combinations of "generative AI", and "medical education." The review was restricted to sources published from 2018 to 2025 as a reflection of the post-deep learning boom and emergence of transformer-based AI tools in education. Studies were included if they addressed (1) the pedagogical use of GenAI in clinical or pre-clinical medical education, (2) instructional design strategies involving AI-powered tools, and (3) ethical and sociotechnical implications of using GenAI in learning contexts. Studies were excluded if they focused solely on technical aspects of AI model architecture or performance, or if they lacked substantive engagement with instructional outcomes or pedagogical frameworks. To support methodological robustness, selected findings were compared against established instructional frameworks in medical education (e.g., Bloom's taxonomy, Miller's pyramid, and constructivist models) to assess coherence and pedagogical relevance. Rather than offering a statistical synthesis, this approach foregrounds interpretive integration and theoretical insight, which are essential in a domain where technological developments often outpace traditional evidence synthesis methodologies.

DISCUSSION

Automated Content Generation

GenAI is transmuting content creation in medical education by streamlining the development of high-fidelity, evidence-based instructional materials aligned with competencybased curricula. Given the administrative burdens faced by educators, GenAI tools facilitate the rapid generation of diverse pedagogical resources (e.g., competency maps, case-based learning scenarios, and structured assessment instruments). This technology optimizes instructional design by automating the synthesis of peer-reviewed medical literature, generating adaptive quizzes, and structuring didactic content to enhance pedagogical efficacy. AI-driven content generation likewise enables the dynamic reconfiguration of learning materials. For example, AIgenerated lecture slides can present key definitions, structured outlines, and explanatory visuals to improve student engagement (Giannakos et al., 2024), while adaptive quizzes adjust question difficulty based on student performance to support personalized learning (Mustafa et al., 2024). GenAI also facilitates just-in-time curriculum updates to ensure medical education remains aligned with evolving clinical guidelines and translational research advancements. Empirical evidence supports GenAI's efficacy, such as its integration into AI-assisted authorship of open educational resources in orthopedic training (Cox et al., 2024) and its role in automating multimedia content for MOOCs (Dao et al., 2021). Furthermore, AI-driven content adaptation enhances accessibility by incorporating inclusive design principles, accommodating neurodiverse learners, and supporting multimodal instructional strategies, as exemplified by initiatives at Open

University UK. Overall, GenAI provides a scalable framework for medical education that optimizes instructional efficiency, personalization, and accessibility.

Despite its pedagogical advantages, the integration of GenAI into medical education presents epistemic and ethical challenges, particularly regarding content validity, inferential accuracy, and contextual appropriateness. AI-generated instructional materials may inadvertently propagate epistemic distortions or factual inconsistencies, which could compromise clinical decision-making in high-stakes domains (Nguyen, 2024). For example, AI-generated lecture content may oversimplify pathophysiological mechanisms, resulting in knowledge gaps that hinder diagnostic reasoning. Additionally, generative models often lack the domain-specific heuristics necessary to critically evaluate the nuances of complex medical phenomena, leading to the production of reductionist or mechanistic explanations (Narayanan et al., 2023). Algorithmic biases embedded within large language models pose another significant concern, as they can distort the representation of disease prevalence, therapeutic efficacy, or population-specific clinical guidelines, potentially exacerbating disparities in medical education and practice (Mustafa et al., 2024). Furthermore, over-reliance on AI-generated content may lead to cognitive disengagement among educators, diminishing opportunities for contextual scaffolding required for deep learning (Khojasteh et al., 2025). As such, its deployment in medical education necessitates robust human oversight, including expert curation, validation through peer review, and alignment with best practices in instructional design and evidence-based medicine (Giannakos et al., 2024).

AI-Generated Assessments and Feedback

The integration of AI in assessment design and feedback mechanisms has transformed medical education by enabling real-time evaluation, adaptive testing, and personalized competency-based learning trajectories. AI-driven assessment platforms generate diverse evaluative formats, including high-fidelity multiple-choice questions, case-based reasoning tasks, and interactive problem-based learning (PBL) scenarios. These systems leverage natural language processing (NLP) and machine learning (ML) algorithms to provide formative feedback, allowing learners to identify cognitive gaps and receive scaffolded remediation strategies tailored to their proficiency levels (Nissen et al., 2025). Additionally, adaptive AI-powered assessments utilize item response theory (IRT) and Bayesian modeling to dynamically calibrate question difficulty based on learner performance, optimizing challenge levels for knowledge retention and skill acquisition (Mustafa et al., 2024). GenAI further enhances the evaluation process by automating the grading of complex assignments, including structured clinical examinations and written reflections. LLMs perform linguistic and content analysis of written submissions, detecting coherence, diagnostic reasoning accuracy, and critical appraisal depth while generating individualized, criterionreferenced feedback. Furthermore, AI-driven integrity verification tools employing stylometry and semantic analysis detect potential academic misconduct and safeguard assessment validity. By automating these routine evaluative functions, AI liberates educators to focus on higher-order mentorship, clinical skill development, and professional identity formation (Liu, 2025). The

immediacy and adaptability of AI-generated feedback promote self-regulated learning that strengthens students' diagnostic reasoning and metacognitive skills over time.

While AI-enhanced assessments offer efficiency, scalability, and personalized learning pathways, they also present epistemological and ethical challenges. A primary concern is the potential for algorithmic bias in AI-generated evaluations, particularly if training datasets lack representational diversity or embed latent inaccuracies (Xia et al., 2024). Such biases can produce skewed competency appraisals, disproportionately disadvantaging underrepresented student populations and undermining assessment fairness. Moreover, AI-generated test items and automated feedback may not always align with competency-based medical education (CBME) frameworks, potentially leading to assessments that lack the depth required for clinical reasoning, procedural fluency, and higher-order cognitive engagement (Bozkurt et al., 2024; Khojasteh et al., 2025). Over-reliance on AI-generated evaluations may also reduce students' engagement in critical thinking and self-directed inquiry, impeding their ability to navigate the complex, ambiguous nature of real-world medical practice (Nguyen, 2024). Additionally, while AI-generated feedback provides immediacy, it often lacks the contextual nuance and case-specific insights that human educators bring to clinical training. Authentic assessment, which emphasizes situated cognition and complex clinical scenario-based tasks, remains essential in fostering deep learning, professional competence, and the development of domain-specific expertise (Lobo et al., 2024). Consequently, while AI-driven assessments enhance efficiency and accessibility, their implementation must be subject to rigorous validation, continuous faculty oversight, and alignment with best practices in medical education to uphold assessment integrity, mitigate bias, and preserve the pedagogical rigor necessary for competent clinical training.

Virtual Patient Simulations

AI and ML are also transforming healthcare simulation by facilitating the development of highly interactive, data-driven virtual patient (VP) models with unprecedented realism. Recent advancements in LLMs demonstrate the feasibility of generating responsive VPs for competencybased medical training (Potter & Jefferies, 2024). These AI-enhanced simulations leverage NLP and reinforcement learning to enable adaptive patient interactions that augment the fidelity of clinical scenarios. AI-driven simulation platforms also allow learners to engage with lifelike virtual patients in structured, risk-free environments, fostering procedural mastery and clinical decisionmaking through iterative, experiential learning. These systems employ real-time physiological modeling to adjust patient responses dynamically based on user inputs, ensuring tailored feedback and scenario complexity modulation aligned with the learner's expertise level (Cook, 2024). Moreover, AI-powered VPs facilitate high-resolution anatomical visualization, enabling realtime exploration of three-dimensional anatomical structures. AR and VR applications further enrich this learning paradigm by integrating haptic feedback and immersive, interactive surgical simulations that replicate dynamic physiological and pathological states with high granularity (Guraya, 2024). This convergence of AI, VR, and AR in medical simulation optimizes skill acquisition, procedural competency development, and patient safety by allowing for repeated,

deliberate practice in a controlled setting. A prime example is ALEX GenAI Lite (Figure 1), an advanced patient communication simulator that integrates GenAI-driven speech recognition and real-time physiological response modeling. ALEX supports multilingual clinical interviews, mimics vital physiological functions, and provides real-time auscultation feedback for cardiac and pulmonary assessments. The synergy of AI-driven naturalistic communication and physiological realism enhances the scope and effectiveness of simulation-based education.

Figure 1. Simulated Patient Encounter Using PCS Alex Virtual Simulator (PCS, 2025)

Despite its transformative potential, AI-powered virtual patient simulations present notable limitations. While GenAI platforms can streamline the design of intricate clinical case scenarios, expert oversight remains crucial to ensure content validity, contextual accuracy, and adherence to evidence-based medical education frameworks (Vaughn et al., 2024). One critical limitation is the potential oversimplification of anatomical and physiological variability, as AI-generated models may not fully replicate the complex heterogeneity of real-world patient presentations (Cook, 2024). Additionally, while AI-based simulations provide high cognitive fidelity, they often lack the tactile realism required for procedural skill development, posing challenges for mastering techniques (e.g., suturing, palpation, and fine motor surgical maneuvers). The absence of realistic haptic sensations may constrain the translation of virtual training into practical clinical proficiency (Guraya, 2024). Another key concern is the cost of deploying high-fidelity AI-driven simulations, particularly in resource-constrained settings where infrastructure and technical support may be limited. Furthermore, effective curriculum integration is essential to ensure that AI-based simulations function as a complementary, rather

than substitutive, modality for experiential learning. Without structured faculty guidance and rigorous instructional scaffolding, learners may develop an over-reliance on virtual simulations, potentially affecting their clinical performance in real-world patient care settings. Consequently, while AI-driven medical simulations offer significant advancements in healthcare education, their implementation must be carefully designed to balance technological innovation with pedagogical integrity, ensuring alignment with competency-based medical training objectives.

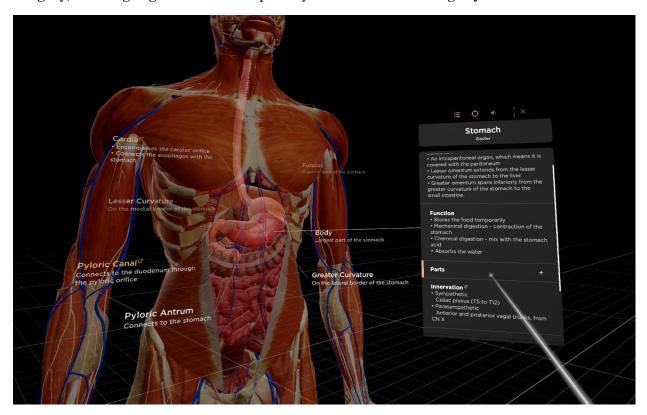


Figure 2. Medical VR Solutions for Teaching Anatomy Without a Cadaver (MAI, 2025)

Virtual Anatomy and Surgical Training

GenAI has also redefined virtual anatomy education and surgical training by delivering a precision-driven learning experience within a controlled digital environment. AI-powered simulations enable medical trainees to explore intricate anatomical structures through high-fidelity three-dimensional models (Elendu et al., 2024). Unlike static cadaveric dissections or two-dimensional textbook representations, AI-driven platforms generate volumetric reconstructions of human anatomy. This feature allows learners to manipulate, segment, and visualize physiological structures from multiple spatial perspectives with real-time biomechanical accuracy (Dai & Ke, 2022). These models integrate adaptive learning algorithms that tailor complexity levels based on learner progression, fostering an individualized, competency-based educational experience (Elendu et al., 2024; Lin & Chen, 2024). AI-driven surgical training environments also provide a risk-free, interactive setting where trainees refine procedural techniques and operative decision-

making through virtual simulations. These platforms (Figure 2) realistically simulate surgical workflows with millimeter-level precision, allowing learners to practice incisions, suturing techniques, and instrument handling before transitioning to live clinical settings (Riddle et al., 2024). AI-based analytics further enhance surgical training by systematically assessing technical performance, identifying cognitive and motor skill deficiencies, and delivering targeted, data-driven feedback to optimize proficiency. Moreover, AI-enabled remote simulation platforms bridge the educational divide for students in resource-limited settings, providing scalable access to high-fidelity anatomical and procedural training that would otherwise require cadaveric laboratories or advanced surgical training centers (Sun et al., 2024; Zidoun & Mardi, 2024). As a cost-effective and scalable approach, AI-driven virtual anatomy and surgical simulations align with competency-based medical education paradigms, equipping learners with a robust foundation in anatomical and procedural knowledge before direct patient interaction.

Although undoubtedly beneficial, this GenAI application also presents inherent limitations in its capacity to replicate the full spectrum of anatomical variability and haptic sensory feedback critical for surgical dexterity. Human anatomical variation, including differences in vascular configurations, pathological anomalies, and tissue elasticity, is often underrepresented in AIgenerated models. While AI-driven simulations offer visually precise anatomical reconstructions, subtle morphological nuances essential for complex surgical decision-making may be absent (Zhai et al., 2024). A primary drawback of AI-based surgical training is the deficit in haptic feedback, which is a crucial factor in developing kinesthetic proficiency. Traditional surgical education relies on cadaveric dissection, animal models, or live patient training to cultivate an intuitive understanding of tissue resistance, elasticity, and force modulation (Pirri et al., 2021). While advancements in haptic gloves offer partial tactile replication, current VR and AR systems remain limited in mirroring the biomechanical complexity of human-tissue interaction. Following our previous remark, over-reliance on AI-driven simulations may create a disparity between theoretical competency and practical execution (Riddle et al., 2024). Infrastructure requirements pose another significant challenge, as AI-enhanced surgical training demands high-performance computing, sophisticated VR hardware, and continuous software updates. Ethical concerns also arise regarding the shift from traditional mentorship-based surgical apprenticeship models to AImediated training. This transition raises questions about the development of professional judgment, clinical intuition, and the humanistic aspects of medical practice (Satapathy et al., 2023). While AI-driven surgical education remains a radical advancement, its implementation must function as an adjunct to hands-on clinical exposure to ensure holistic skill acquisition.

Language Translation and Simplification

Another pivotal advancement in GenAI within medical education is its role in language translation and medical content simplification, which enhances accessibility for linguistically diverse learners and underprepared students. AI-driven translation systems facilitate domain-specific translations of medical textbooks, didactic materials, and peer-reviewed literature with semantic preservation (Genovese et al., 2024). These computational linguistics models mitigate

lexical asymmetry between source and target languages, ensuring that non-native speakers gain unobstructed access to specialized medical knowledge. Additionally, AI-powered NLP pipelines execute lexical simplification and syntactic restructuring, which deconstructs complex biomedical nomenclature into more cognitively digestible formats—a critical benefit for preclinical students transitioning from foundational biosciences to applied clinical reasoning (Mir et al., 2023). Beyond static translation, adaptive AI-driven knowledge dissemination systems utilize reinforcement learning algorithms to calibrate content granularity based on real-time learner analytics. Dynamic knowledge graphs and intelligent tutoring systems (ITS) further enhance comprehension by contextually encoding medical ontologies, adjusting explanatory depth through personalized, multimodal instructional strategies, including interactive schematic overlays and three-dimensional anatomical annotations (Garcia & Garcia, 2023; Lin et al., 2023). These cognitive augmentation technologies enhance pedagogical inclusivity to ensure that heterogeneous learner cohorts engage with evidence-based medical curricula. Furthermore, AIfacilitated language interoperability extends its utility beyond didactic instruction, enabling crossborder knowledge transfer and multilingual clinical communication, particularly in transnational healthcare ecosystems (Barwise et al., 2024). By redefining linguistic accessibility in medical education, AI scaffolds the development of globally attuned healthcare professionals.

However, neural sequence modeling in AI-driven translation introduces epistemic vulnerabilities, particularly in semantic fidelity and terminological precision. A paramount concern is that probabilistic autoregressive models may generate lexical perturbations and polysemous ambiguities, leading to clinically consequential mistranslations (Naveen & Trojovský, 2024). Biomedical phraseology in domains such as pharmacokinetics, neuropathophysiology, and oncological pathology is semantically dense, where even marginal distortions in translingual encoding may compromise diagnostic accuracy. Additionally, LLMs, despite their contextual embedding optimizations, may produce algorithmically induced epistemic distortions, where explanatory reductionism leads to excessive abstraction of mechanistic pathophysiology (Khosravi et al., 2024). This didactic attenuation risks impairing medical reasoning schemas, disrupting diagnostic pattern recognition, and eroding clinical inferencing fidelity (Jin et al., 2024). A further structural limitation arises from AI-mediated lexical disambiguation failures, particularly in homonymous biomedical lexemes, where polysemic constructs (e.g., "lead" as a toxicant vs. an electrocardiographic waveform descriptor) may be contextually misattributed (Naveen & Trojovský, 2024). Moreover, algorithmic textual simplification lacks the heuristic adaptability of expert educators, who contextualize didactic materials based on learner epistemology and clinical reasoning progression. Without ontological validation and expert curation, AI-generated content risks propagating epistemic opacity, where learners unknowingly assimilate suboptimal or semantically compromised medical knowledge (Zhai et al., 2024). Hybridized AI-human instructional frameworks are imperative to mitigate these epistemological risks. Integrated validation pipelines, where automated translation outputs undergo expert peer review, ensure semantic coherence, domain specificity, and clinical applicability.

Medical Research Assistance

Medical and academic research methodologies are likewise being transformed through the integration of GenAI. NLP architectures, coupled with unsupervised and supervised ML algorithms, facilitate the rapid analysis of large-scale biomedical corpora, extracting clinically relevant insights and identifying emerging research trajectories (Hossain et al., 2023). These automated knowledge synthesis models surpass manual review methodologies, mitigating humaninduced selection bias while optimizing semantic indexing and evidence mapping. Unlike traditional bibliometric approaches, which are resource-intensive and susceptible to interreviewer variability, LLM-powered meta-analytic pipelines accelerate literature synthesis with algorithmic precision and contextual coherence (Xiao et al., 2025). Beyond bibliographic aggregation, AI augments hypothesis generation and research design by using predictive modeling, identifying statistical correlations, and proposing novel exploratory variables for empirical investigation (Dixon et al., 2024). Impressively, advanced generative architectures simulate hypothetical clinical scenarios and allow researchers to model potential causative relationships and refine research inquiries based on historical epidemiological trends. Automated data synthesis engines also generate structured narrative abstracts, visualize multivariate datasets, and employ dimensionality reduction techniques to uncover latent data patterns. These capabilities redefine research productivity by enabling investigators to prioritize experimental validation and inferential rigor over preliminary data acquisition. The scalability of AI in biomedical informatics fosters knowledge acceleration, driving high-impact scientific discoveries across translational medicine and clinical research paradigms (Serrano et al., 2024).

However, algorithmic-driven knowledge synthesis introduces epistemology, particularly regarding content validity, inferential generalizability, and methodological transparency. Alternatively, a critical limitation is that GenAI leverages pre-trained corpora, which may contain embedded inaccuracies, historical biases, or epistemic distortions (Hanna et al., 2025). In highstakes biomedical research, AI hallucinations pose risks to evidence-based medicine and translational accuracy. Moreover, AI-generated hypotheses—although computationally derived often lack epistemic depth and heuristic reasoning, potentially yielding superficial, mechanistic, or non-actionable research inquiries. Algorithmic bias in AI-driven metaresearch is another paramount concern, as LLMs inherent selection biases from skewed training datasets (Cross et al., 2024). For instance, biomedical models trained predominantly on Eurocentric clinical trials may generate non-generalizable findings. Over-reliance on automated synthesis models also risks circumventing essential peer-review mechanisms, which are foundational to scientific integrity and methodological reproducibility (Resnik & Hosseini, 2024). Further ethical concerns arise from AI-generated citation fabrications, where synthetically generated references can exacerbate concerns of research integrity violations and scientific fraudulence (Acut et al., 2024). AI-assisted research outputs must undergo rigorous cross-validation to ensure that algorithmic inferences align with empirically verified sources. Hybridized peer-review frameworks, wherein AIaugmented literature synthesis undergoes expert vetting, are essential to preserving scholarly rigor and epistemic accountability. Implementing AI governance policies, promoting algorithmic

transparency, and enforcing ethical compliance guidelines will balance computational efficiency with academic credibility, safeguarding the integrity of AI-integrated medical research.

Adaptive Learning Systems

The integration of AI in Adaptive Learning Systems (ALS) has revolutionized medical education by enabling data-driven instructional modulation tailored to individual learner profiles (Capuano & Caballé, 2020). Unlike traditional pedagogical frameworks, which implement standardized curricular models, AI-enhanced ALS deploys ML algorithms to optimize knowledge retention, cognitive engagement, and metacognitive regulation (Alawneh et al., 2024). In medical education, AI-driven systems continuously analyze performance metrics, response latency, and interaction patterns to identify conceptual deficiencies and administer targeted remediation strategies (Kabudi et al., 2021). Adaptive learning platforms also leverage predictive analytics and neural network-based optimization to sequence instructional content. For instance, an ALSintegrated diagnostic reasoning module may intensify radiological image interpretation drills for students exhibiting suboptimal pattern recognition performance in electrocardiogram (ECG) waveform differentiation. Empirical research underscores the efficacy of AI-driven scaffolded instruction in not only amplifying academic performance but also enhancing conceptual transferability through interactive cognitive scaffolding and hierarchical content structuring (Lajoie & Gube, 2018). According to Martin et al. (2020), a comprehensive learning framework comprises three interdependent models: (1) Learner Model, which captures cognitive attributes, prior knowledge schemas, and individualized learning preferences; (2) Content Model, which delineates conceptual hierarchies and disciplinary complexity, structuring content to optimize domain coherence; and (3) Instructional Model, which modulates sequencing, pacing, and formative feedback loops to maximize learner efficacy. They argued that adaptive feedback mechanisms and AI-curated navigation pathways constitute some of the most efficacious AI methodologies for optimizing personalized learning trajectories. By integrating immediate diagnostic feedback, AI ensures that learners receive contextually relevant, precision-targeted instructional guidance while maintaining an optimal cognitive challenge threshold.

However, despite its pedagogical advancements, ALS introduces critical epistemological and cognitive risks, particularly in the attenuation of self-regulated learning capacities (Strielkowski et al., 2024). Clinical competency development necessitates metacognitive regulation, diagnostic reasoning, and heuristic decision-making, yet excessive dependence on AI-driven content modulation may diminish cognitive autonomy and analytical depth. Empirical studies highlight that when students passively engage with ALS technologies, they exhibit reduced engagement in self-directed inquiry (Lajoie & Gube, 2018). Another pressing concern is algorithmic bias in AI-mediated instructional decision-making, wherein non-representative training datasets can lead to disparities in content recommendations (Capuano & Caballé, 2020; Kabudi et al., 2021). AI-generated assessments may also lack the contextual granularity and ethical complexity that expert human educators provide, particularly in medical scenarios requiring clinical judgment and bioethical reasoning. While adaptive learning enhances personalized

knowledge scaffolding, designing ALS to foster cognitive agency is imperative (Martin et al., 2020). The most pedagogically effective ALS implementations integrate AI-driven adaptivity with metacognitive enhancement techniques (e.g., student self-assessment frameworks, reflective learning analytics, and PBL methodologies) to ensure that learners retain agency over their cognitive trajectories. To mitigate these risks, hybrid instructional models once again offer the optimal equilibrium between automation and cognitive empowerment. Ensuring educational efficacy and preserving the epistemic integrity of medical training necessitates iterative curriculum recalibration and rigorous algorithmic monitoring.

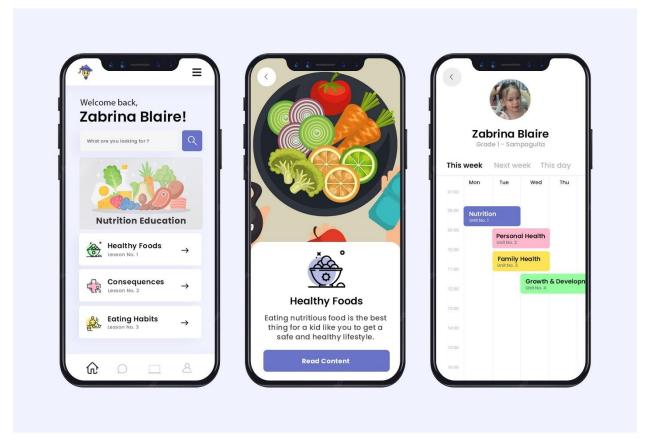


Figure 3. Nutrition Intelligent Tutoring System for Primary Education (Garcia & Garcia, 2023)

Intelligent Tutoring Systems

A further significant development in medical education is the integration of ITS to create adaptive learning environments. ITS functions as cognitive scaffolding agents that emulate human tutoring methodologies by dynamically adjusting instruction and delivering context-sensitive feedback. These systems integrate domain-specific knowledge, learner modeling algorithms, and evidence-based pedagogical frameworks to facilitate competency-driven learning trajectories (Castro-Schez et al., 2021). ITS has demonstrated high efficacy in medical education by generating multimodal learning spaces that adapt to heterogeneous learner needs through adaptive content sequencing and intelligent feedback loops. AI-driven cognitive diagnostic models

analyze user interactions, error patterns, and response latencies (Singh et al., 2022). In medical training, ITS applications span multiple disciplinary domains. For instance, Garcia and Garcia (2023) used ITS as an instructional technology for teaching and learning nutrition concepts (Figure 3). Similarly, Mirchi et al. (2020) used ITS in surgical education, where procedural simulations provide competency-based feedback. ITS embedded with NLP, such as the model by As'ad (2024), enhances conversational AI tutoring and allows learners to engage in context-aware discussions where AI tutors explain complex medical concepts in natural language. Like ALS, one of the most salient advantages of ITS is its ability to foster self-regulated learning. ITS have been empirically validated to enhance clinical knowledge acquisition and learner confidence beyond conventional didactic methodologies (Yang & Shulruf, 2019). By orchestrating structured problem-solving tasks, providing real-time diagnostic feedback, and reducing cognitive overload, ITS enhances conceptual engagement and cognitive scaffolding of learners.

However, the integration of ITS in medical education introduces critical epistemological, pedagogical, and ethical challenges. One of the primary concerns is a potential attenuation of human educator engagement, which may impede the development of critical reasoning and clinical decision-making competencies. While ITS expedite formative feedback, they often lack the depth of heuristic reasoning and ethical contextualization that human educators provide, particularly in complex patient care scenarios where clinical decisions transcend algorithmic recommendations (Mousavinasab et al., 2018). ITS also faces integration challenges within competency-based medical curricula, as overreliance on automated tutoring environments may diminish learner autonomy and analytical dexterity, leading to passive information assimilation rather than active inquiry (Singh et al., 2022). Moreover, algorithmic biases in ITS pose a systemic risk to equitable medical education, as models trained on non-diverse clinical datasets may exacerbate knowledge disparities and skew competency assessments (As'ad, 2024). This issue is particularly critical in algorithmic competency evaluation, where training-set homogeneity may result in a disproportionate representation of certain clinical presentations, disadvantaging underrepresented medical conditions or minority populations. Overdependence on AI-mediated tutoring frameworks risks fostering algorithmic dependency, wherein learners prioritize computational guidance over independent critical inquiry and collaborative problem-solving (Gantalao et al., 2025; Singh et al., 2022). To mitigate these challenges, hybrid instructional architectures that synergize ITS with expert mentoring and peer-driven discourse have been proposed. These integrative pedagogical frameworks ensure that AI-driven efficiencies do not erode the humanistic and heuristic dimensions of medical training.

POSSIBILITIES AND FUTURE ADVANCEMENTS

The progressive integration of GenAI in medical education signals a paradigmatic shift in pedagogical methodologies, curricular design, and educator roles. Building upon extant applications, emergent AI capabilities are poised to catalyze hyper-individualized instruction, multimodal didactics, AI-augmented scholarly inquiry, and real-time clinical decision-making training. Concurrently, robust ethical governance frameworks and efficacy validation are

imperative to ensure the integrity and inclusivity of these innovations. This section examines the trajectory of AI-mediated transformation in medical education, with an emphasis on the augmentation of existing functionalities and the advent of novel frontiers.

AI-Driven Personalization and Clinical Decision Support

AI in medical education is progressing toward anticipatory and dynamically responsive pedagogical architectures. Forthcoming ITS will integrate predictive modeling, leveraging deep learning and longitudinal learner analytics to preemptively identify cognitive lacunae and recalibrate instructional delivery in real time. This proactive optimization mitigates cognitive overload, reinforces knowledge retention, and cultivates advanced clinical reasoning competencies (Capuano & Caballé, 2020; Potter & Jefferies, 2024). Next-generation AI tutors will also supersede rule-based interactivity by incorporating situational awareness, case-based reasoning, and dialogic learning frameworks. These systems will iteratively refine their inferential capacity via federated ML paradigms, continuously assimilating de-identified, globally sourced learner interaction data to enhance pedagogical precision (Martin et al., 2020; Singh et al., 2022). Furthermore, multimodal AI frameworks will revolutionize virtual patient simulations, engendering fully adaptive, biofeedback-sensitive clinical environments. Through the integration of biometric telemetry, affective computing, and real-time performance metrics, AI systems will modulate clinical scenarios to align with learners' cognitive states, thus enhancing diagnostic fidelity and fostering metacognitive reflection. Such innovations will be particularly transformative in high-acuity domains such as surgical education, trauma response training, and telemedicine, where temporal precision and decision-making under duress are paramount.

Ethical and Regulatory Frameworks to Address Systemic Risks

The deployment of AI in medical pedagogy introduces substantive bioethical, legal, and regulatory challenges. Salient among these are concerns regarding algorithmic opacity, model bias, and the integrity of autonomous evaluative systems (Garcia, Garcia, et al., 2024; Strielkowski et al., 2024). Given that AI algorithms are inherently reflective of their training corpora, there exists a significant risk of perpetuating sociocultural and diagnostic inequities, particularly within underrepresented demographic cohorts (Kabudi et al., 2021). Meanwhile, the aggregation and processing of granular learner data (e.g., behavioral analytics, biometric feedback, and clinical reasoning trajectories) require stringent adherence to data protection mandates such as the GDPR, HIPAA, and analogous international statutes. AI-driven simulation platforms exacerbate vulnerability to cybersecurity threats, necessitating end-to-end encryption, differential privacy protocols, and institutional accountability mechanisms (Chen & Esmaeilzadeh, 2024). These issues necessitate preserving the primacy of human oversight through rigorous validation, ethical auditing, and governance mechanisms that uphold professional autonomy.

Human-AI Synergy in Enhancing Pedagogical Outcomes

The optimal integration of AI in medical education is predicated upon a collaborative paradigm wherein AI functions as an augmentative cognitive tool rather than a pedagogical surrogate. Interdisciplinary co-development involving clinical educators, computational scientists, and instructional designers is imperative to ensure that AI applications align with epistemological objectives and curricular standards (Schubert et al., 2025). Contemporary AI platforms already automate granular tasks such as rubric-aligned grading, curriculum mapping, and algorithmic content curation, liberating educators to concentrate on high-order cognitive scaffolding, ethical deliberation, and clinical contextualization (Narayanan et al., 2023). AI tutors of the next generation will employ semantic understanding, contextual inference, and case-based narrative analytics to facilitate personalized, longitudinal mentorship. Their continual refinement through federated learning ensures global scalability and cultural adaptability (Cox et al., 2024). Institutionalizing AI literacy within medical curricula is essential to cultivate informed practitioners capable of interrogating AI outputs, recognizing algorithmic fallibility, and engaging responsibly with emerging technologies. These programs must encompass epistemic training in AI interpretability, model limitations, and sociotechnical ethics to foster judicious integration into clinical training (Genovese et al., 2024; Yazdani & Abardeh, 2019).

Equitable Deployment of GenAI in Global and Resource-Constrained Contexts

GenAI possesses the potential to democratize access to high-fidelity medical training in under-resourced and linguistically diverse settings. Multilingual AI language models can localize complex clinical knowledge, which enhances cognitive accessibility for non-English-speaking trainees and facilitating culturally congruent pedagogy (Genovese et al., 2024). Infrastructurally minimal yet pedagogically robust solutions (e.g., AI-enabled mobile platforms and low-bandwidth virtual simulations) offer scalable alternatives to traditional cadaveric or apprenticeship-based training. These technologies support competency-based skill acquisition in diagnostic and procedural domains, which directly address global disparities in clinical education (McGee et al., 2024; Potter & Jefferies, 2024). Moreover, AI-augmented tele-mentorship ecosystems and cloudbased collaborative platforms facilitate synchronous and asynchronous engagement between learners and global clinical experts. These systems enable case-based learning, peer interaction, and dynamically tailored feedback, which are all modulated via AI-driven learning analytics (Dixon et al., 2024). Equitable dissemination of such technologies necessitates infrastructural investment, policy support, and cross-border collaboration. Ensuring that AI-driven educational tools are accessible, linguistically adaptable, and pedagogically validated is critical to fostering globally inclusive, competency-driven medical training environments (Elendu et al., 2024).

CONCLUSION

Even in a learning environment as intense as medical school, where complexity is the norm and cognitive overload a constant companion, GenAI offers relief with purpose. Rather than

adding pressure to the already overwhelming torrent of information, GenAI can serve as a well-calibrated valve that channels learning in ways that are more adaptive and responsive to individual needs. As this review has shown, its strengths lie not in replacing educators or simplifying medicine but in enhancing how knowledge is delivered, contextualized, and retained. At the same time, its integration is not without friction: questions of accuracy, bias, accountability, and pedagogical misalignment must temper uncritical enthusiasm. The way we train future physicians today profoundly influences how they will practice medicine, lead their communities, and drive innovation in the years ahead. As such, the thoughtful adoption of GenAI in medical education is not just a matter of instructional design but an investment in the future of healthcare itself.

REFERENCES

- Acharya, V., Padhan, P., Bahinipati, J., Mishra, S., Aggarwal, K., Jhajharia, S., Parida, P., Sahu, D., & Pradhan, T. (2023). Artificial Intelligence in Medical Education. *Journal of Integrative Medicine and Research*, 1(3), 87-91. https://doi.org/10.4103/jimr.jimr 17 23
- Acut, D. P., Gamusa, E. V., Pernaa, J., Yuenyong, C., Pantaleon, A. T., Espina, R. C., Sim, M. J. C., & Garcia, M. B. (2025). AI Shaming Among Teacher Education Students: A Reflection on Acceptance and Identity in the Age of Generative Tools. In *Pitfalls of AI Integration in Education: Skill Obsolescence, Misuse, and Bias*. IGI Global. https://doi.org/10.4018/979-8-3373-0122-8.ch005
- Acut, D. P., Malabago, N. K., Malicoban, E. V., Galamiton, N. S., & Garcia, M. B. (2024). "ChatGPT 4.0 Ghosted Us While Conducting Literature Search:" Modeling the Chatbot's Generated Non-Existent References Using Regression Analysis. *Internet Reference Services Quarterly*, 29(1), 27-54. https://doi.org/10.1080/10875301.2024.2426793
- Alawneh, Y. J. J., Sleema, H., Salman, F. N., Alshammat, M. F., Oteer, R. S., & ALrashidi, N. K. N. (2024). Adaptive Learning Systems: Revolutionizing Higher Education through AI-Driven Curricula. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), 1, 1-5. https://doi.org/10.1109/ICKECS61492.2024.10616675
- Almeida, R. S. d. (2023). Redefining Health Education in the Post-Pandemic World: How to Integrate Digital Technologies into the Curricula? In *Handbook of Research on Instructional Technologies in Health Education and Allied Disciplines*. IGI Global. https://doi.org/10.4018/978-1-6684-7164-7.ch001
- As'ad, M. (2024). Intelligent Tutoring Systems, Generative Artificial Intelligence (AI), and Healthcare Agents: A Proof of Concept and Dual-Layer Approach. *Cureus*. https://doi.org/10.7759/cureus.69710
- Aster, A., Laupichler, M. C., Rockwell-Kollmann, T., Masala, G., Bala, E., & Raupach, T. (2024). ChatGPT and Other Large Language Models in Medical Education Scoping Literature Review. *Medical Science Educator*, 1-13. https://doi.org/10.1007/s40670-024-02206-6
- Barwise, A. K., Curtis, S., Diedrich, D. A., & Pickering, B. W. (2024). Using Artificial Intelligence to Promote Equitable Care for Inpatients With Language Barriers and Complex Medical Needs: Clinical Stakeholder Perspectives. *Journal of the American Medical Informatics Association*, 31(3), 611-621. https://doi.org/10.1093/jamia/ocad224
- Boscardin, C. K., Gin, B., Golde, P. B., & Hauer, K. E. (2024). ChatGPT and Generative Artificial Intelligence for Medical Education: Potential Impact and Opportunity. *Academic Medicine*, *99*(1). https://doi.org/10.1097/ACM.000000000000005439
- Bozkurt, A., Xiao, J., Farrow, R., Bai, J. Y. H., Nerantzi, C., Moore, S., Dron, J., Stracke, C. M., Singh, L., Crompton, H., Koutropoulos, A., Terentev, E., Pazurek, A., Nichols, M., Sidorkin, A. M., Costello, E., Watson, S., Mulligan, D., Honeychurch, S., et al. (2024). The Manifesto for Teaching and Learning in a Time of Generative AI: A Critical Collective Stance to Better Navigate the Future. *Open Praxis*, *16*(4), 487-513. https://doi.org/10.55982/openpraxis.16.4.777
- Buja, L. M. (2019). Medical Education Today: All That Glitters is Not Gold. BMC Medical Education, 19(1), 1-11. https://doi.org/10.1186/s12909-019-1535-9

- Capuano, N., & Caballé, S. (2020). Adaptive Learning Technologies. *AI Magazine*, 41(2), 96-98. https://doi.org/10.1609/aimag.v41i2.5317
- Castro-Schez, J. J., Glez-Morcillo, C., Albusac, J., & Vallejo, D. (2021). An Intelligent Tutoring System for Supporting Active Learning: A Case Study on Predictive Parsing Learning. *Information Sciences*, *544*, 446-468. https://doi.org/10.1016/j.ins.2020.08.079
- Cervantes, J., Smith, B., Ramadoss, T., D'Amario, V., Shoja, M. M., & Rajput, V. (2024). Decoding Medical Educators' Perceptions on Generative Artificial Intelligence in Medical Education. *Journal of Investigative Medicine*, 72(7), 633-639. https://doi.org/10.1177/10815589241257215
- Chen, Y., & Esmaeilzadeh, P. (2024). Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges. *Journal of Medical Internet Research*, 26, 1-19. https://doi.org/10.2196/53008
- Chowdhury, P. N., Vaish, A., Puri, B., & Vaishya, R. (2024). Medical Education Technology: Past, Present and Future. *Apollo Medicine*, 21(4), 374-380. https://doi.org/10.1177/09760016241256202
- Cook, D. A. (2024). Creating Virtual Patients Using Large Language Models: Scalable, Global, and Low Cost. *Medical Teacher*, 47(1), 40-42. https://doi.org/10.1080/0142159x.2024.2376879
- Cox, G., Willmers, M., Brown, R., & Held, M. (2024). Learning along the Way: A Case Study on a Pedagogically Innovative Approach to Engage Medical Students in the Creation of Open Educational Resources Using ChatGPT. *Mousaion: South African Journal of Information Studies*, 42(1), 1-21. https://doi.org/10.25159/2663-659X/15331
- Cross, J. L., Choma, M. A., & Onofrey, J. A. (2024). Bias in Medical AI: Implications for Clinical Decision-Making. *PLOS Digital Health*, *3*(11), 1-19. https://doi.org/10.1371/journal.pdig.0000651
- Dai, C.-P., & Ke, F. (2022). Educational Applications of Artificial Intelligence in Simulation-Based Learning: A Systematic Mapping Review. *Computers and Education: Artificial Intelligence*, 3, 1-17. https://doi.org/10.1016/j.caeai.2022.100087
- Dao, X.-Q., Le, N.-B., & Nguyen, T.-M.-T. (2021). AI-Powered MOOCs: Video Lecture Generation. *Proceedings of the 2021 3rd International Conference on Image, Video and Signal Processing*, 95–102. https://doi.org/10.1145/3459212.3459227
- Dixon, D., Sattar, H., Moros, N., Kesireddy, S. R., Ahsan, H., Lakkimsetti, M., Fatima, M., Doshi, D., Sadhu, K., & Junaid Hassan, M. (2024). Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. *Cureus*, *16*(5), e59954. https://doi.org/10.7759/cureus.59954
- Elendu, C., Amaechi, D. C., Okatta, A. U., Amaechi, E. C., Elendu, T. C., Ezeh, C. P., & Elendu, I. D. (2024). The Impact of Simulation-Based Training in Medical Education: A Review. *Medicine*, 103(27), 1-14. https://doi.org/10.1097/MD.00000000000038813
- Elhaddad, M., & Hamam, S. (2024). AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus, 16(4), 1-9. https://doi.org/10.7759/cureus.57728
- Feigerlova, E., Hani, H., & Hothersall-Davies, E. (2025). A Systematic Review of the Impact of Artificial Intelligence on Educational Outcomes in Health Professions Education. *BMC Medical Education*, 25(1), 1-18. https://doi.org/10.1186/s12909-025-06719-5
- Gantalao, L. C., Calzada, J. G. D., Capuyan, D. L., Lumantas, B. C., Acut, D. P., & Garcia, M. B. (2025). Equipping the Next Generation of Technicians: Navigating School Infrastructure and Technical Knowledge in the Age of AI Integration. In *Pitfalls of AI Integration in Education: Skill Obsolescence, Misuse, and Bias*. IGI Global. https://doi.org/10.4018/979-8-3373-0122-8.ch009
- Garcia, M. B., Arif, Y. M., Khlaif, Z. N., Zhu, M., de Almeida, R. P. P., de Almeida, R. S., & Masters, K. (2024). Effective Integration of Artificial Intelligence in Medical Education: Practical Tips and Actionable Insights. In *Transformative Approaches to Patient Literacy and Healthcare Innovation* (pp. 1-19). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch001
- Garcia, M. B., de Almeida, R. P. P., Arif, Y. M., Miranda, J. P. P., Tavares, D. P., Tariq, M. U., de Almeida, R. S., & López, M. (2025). Technology-Enhanced Learning in Health Professions Education: Current Trends and Applications. In Â. Jesus (Ed.), *Technological Approaches to Medical and Pharmaceutical Education* (pp. 455-488). IGI Global. https://doi.org/10.4018/979-8-3373-1127-2.ch013
- Garcia, M. B., & Garcia, P. S. (2023). Intelligent Tutoring System as an Instructional Technology in Learning Basic Nutrition Concepts: An Exploratory Sequential Mixed Methods Study. In *Handbook of Research on Instructional Technologies in Health Education and Allied Disciplines*. IGI Global. https://doi.org/10.4018/978-1-6684-7164-7.ch012

- Garcia, M. B., Garcia, P. S., Maaliw III, R. R., Lagrazon, P. G. G., Arif, Y. M., Ofosu-Ampong, K., Yousef, A. M. F., & Vaithilingam, C. A. (2024). Technoethical Considerations for Advancing Health Literacy and Medical Practice: A Posthumanist Framework in the Age of Healthcare 5.0. In *Emerging Technologies for Health Literacy and Medical Practice*. IGI Global. https://doi.org/10.4018/979-8-3693-1214-8.ch001
- Garcia, M. B., Rosak-Szyrocka, J., Yılmaz, R., Metwally, A. H. S., Acut, D. P., Ofosu-Ampong, K., Erdoğdu, F., Fung, C. Y., & Bozkurt, A. (2025). Rethinking Educational Assessment in the Age of Generative AI: Actionable Strategies to Mitigate Academic Dishonesty. In *Pitfalls of AI Integration in Education: Skill Obsolescence*, Misuse, and Bias. IGI Global. https://doi.org/10.4018/979-8-3373-0122-8.ch001
- Genovese, A., Borna, S., Gomez-Cabello, C. A., Haider, S. A., Prabha, S., Forte, A. J., & Veenstra, B. R. (2024). Artificial Intelligence in Clinical Settings: A Systematic Review of Its Role in Language Translation and Interpretation. *Annals of Translational Medicine*, 12(6), 1-16. https://doi.org/10.21037/atm-24-162
- Giannakos, M., Azevedo, R., Brusilovsky, P., Cukurova, M., Dimitriadis, Y., Hernandez-Leo, D., Järvelä, S., Mavrikis, M., & Rienties, B. (2024). The Promise and Challenges of Generative AI in Education. *Behaviour & Information Technology*, 1-27. https://doi.org/10.1080/0144929X.2024.2394886
- Gordon, M., Daniel, M., Ajiboye, A., Uraiby, H., Xu, N. Y., Bartlett, R., Hanson, J., Haas, M., Spadafore, M., Grafton-Clarke, C., Gasiea, R. Y., Michie, C., Corral, J., Kwan, B., Dolmans, D., & Thammasitboon, S. (2024). A Scoping Review of Artificial Intelligence in Medical Education: BEME Guide No. 84. *Medical Teacher*, 46(4), 446-470. https://doi.org/10.1080/0142159X.2024.2314198
- Guraya, S. Y. (2024). Transforming Simulation in Healthcare to Enhance Interprofessional Collaboration Leveraging Big Data Analytics and Artificial Intelligence. *BMC Medical Education*, 24(1). https://doi.org/10.1186/s12909-024-05916-y
- Hale, J., Alexander, S., Wright, S. T., & Gilliland, K. (2024). Generative AI in Undergraduate Medical Education: A Rapid Review. Journal of Medical Education and Curricular Development, 11, 1-15. https://doi.org/10.1177/23821205241266697
- Han, Z., Battaglia, F., Udaiyar, A., Fooks, A., & Terlecky, S. R. (2024). An Explorative Assessment of ChatGPT as an Aid in Medical Education: Use It With Caution. *Medical Teacher*, 46(5), 657-664. https://doi.org/10.1080/0142159X.2023.2271159
- Hanna, M. G., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., Deebajah, M., & Rashidi, H. H. (2025). Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. *Modern Pathology*, 38(3), 1-13. https://doi.org/10.1016/j.modpat.2024.100686
- Hossain, E., Rana, R., Higgins, N., Soar, J., Barua, P. D., Pisani, A. R., & Turner, K. (2023). Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-Making: A Systematic Review. Computers in Biology and Medicine, 155, 1-24. https://doi.org/10.1016/j.compbiomed.2023.106649
- Jackson, P., Ponath Sukumaran, G., Babu, C., Tony, M. C., Jack, D. S., Reshma, V. R., Davis, D., Kurian, N., & John, A. (2024). Artificial Intelligence in Medical Education Perception Among Medical Students. *BMC Medical Education*, 24(1), 1-9. https://doi.org/10.1186/s12909-024-05760-0
- Janumpally, R., Nanua, S., Ngo, A., & Youens, K. (2024). Generative Artificial Intelligence in Graduate Medical Education. *Frontiers in Medicine*, 11, 1-9. https://doi.org/10.3389/fmed.2024.1525604
- Jin, Q., Chen, F., Zhou, Y., Xu, Z., Cheung, J. M., Chen, R., Summers, R. M., Rousseau, J. F., Ni, P., Landsman, M. J., Baxter, S. L., Al'Aref, S. J., Li, Y., Chen, A., Brejt, J. A., Chiang, M. F., Peng, Y., & Lu, Z. (2024). Hidden Flaws Behind Expert-Level Accuracy of Multimodal GPT-4 Vision in Medicine. npj Digital Medicine, 7(1), 1-6. https://doi.org/10.1038/s41746-024-01185-7
- Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-Enabled Adaptive Learning Systems: A Systematic Mapping of the Literature. *Computers and Education: Artificial Intelligence*, 2, 100017. https://doi.org/10.1016/j.caeai.2021.100017
- Khojasteh, L., Kafipour, R., Pakdel, F., & Mukundan, J. (2025). Empowering Medical Students With AI Writing Co-Pilots: Design and Validation of AI Self-Assessment Toolkit. *BMC Medical Education*, 25(1), 1-22. https://doi.org/10.1186/s12909-025-06753-3
- Khosravi, M., Zare, Z., Mojtabaeian, S. M., & Izadi, R. (2024). Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. *Health Services Research and Managerial Epidemiology*, 11, 1-15. https://doi.org/10.1177/23333928241234863
- Kirch, S. A., & Sadofsky, M. J. (2021). Medical Education From a Theory-Practice-Philosophy Perspective. *Academic Pathology*, 8, 1-15. https://doi.org/10.1177/23742895211010236

- Krive, J., Isola, M., Chang, L., Patel, T., Anderson, M., & Sreedhar, R. (2023). Grounded in Reality: Artificial Intelligence in Medical Education. *JAMIA Open*, 6(2), 1-7. https://doi.org/10.1093/jamiaopen/ooad037
- Lajoie, S. P., & Gube, M. (2018). Adaptive Expertise in Medical Education: Accelerating Learning Trajectories by Fostering Self-Regulated Learning. *Medical Teacher*, 40(8), 809-812. https://doi.org/10.1080/0142159x.2018.1485886
- Lin, C.-C., Huang, A. Y. Q., & Lu, O. H. T. (2023). Artificial Intelligence in Intelligent Tutoring Systems Toward Sustainable Education: A Systematic Review. *Smart Learning Environments*, 10(1), 1-22. https://doi.org/10.1186/s40561-023-00260-y
- Lin, H., & Chen, Q. (2024). Artificial Intelligence (AI) -Integrated Educational Applications and College Students' Creativity and Academic Emotions: Students and Teachers' Perceptions and Attitudes. *BMC Psychology*, 12(1), 1-16. https://doi.org/10.1186/s40359-024-01979-0
- Liu, L. (2025). AI and the Crisis of Legitimacy in Higher Education. *American Journal of STEM Education*, 4, 16-26. https://doi.org/10.32674/42qssk59
- Lobo, M. D., Miravent, S., de Almeida, R. P. P., & Garcia, M. B. (2024). Advancing Precision in Physical Education and Sports Science: A Review of Medical Imaging Methods for Assessing Body Composition. In *Global Innovations in Physical Education and Health*. IGI Global. https://doi.org/10.4018/979-8-3693-3952-7.ch011
 MAI. (2025). All-in-One VR & MR Anatomy and Acupuncture Platform. https://www.mai.ai/
- Martin, F., Chen, Y., Moore, R. L., & Westine, C. D. (2020). Systematic Review of Adaptive Learning Research Designs, Context, Strategies, and Technologies from 2009 to 2018. *Educational Technology Research and Development*, 68(4), 1903-1929. https://doi.org/10.1007/s11423-020-09793-2
- McGee, R. G., Wark, S., Mwangi, F., Drovandi, A., Alele, F., Malau-Aduli, B. S., & The, A. C. (2024). Digital Learning of Clinical Skills and Its Impact on Medical Students' Academic Performance: A Systematic Review. *BMC Medical Education*, 24(1), 1-23. https://doi.org/10.1186/s12909-024-06471-2
- Mir, M. M., Mir, G. M., Raina, N. T., Mir, S. M., Mir, S. M., Miskeen, E., Alharthi, M. H., & Alamri, M. M. S. (2023). Application of Artificial Intelligence in Medical Education: Current Scenario and Future Perspectives. *Journal of Advances in Medical Education & Professionalism*, 11(3), 133-140. https://doi.org/10.30476/jamp.2023.98655.1803
- Mirchi, N., Ledwos, N., & Del Maestro, R. F. (2020). Intelligent Tutoring Systems: Re-Envisioning Surgical Education in Response to COVID-19. *Canadian Journal of Neurological Sciences*, 48(2), 198-200. https://doi.org/10.1017/cjn.2020.202
- Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L., & Ghazi Saeedi, M. (2018).

 Intelligent Tutoring Systems: A Systematic Review of Characteristics, Applications, and Evaluation Methods.

 Interactive Learning Environments, 29(1), 142-163. https://doi.org/10.1080/10494820.2018.1558257
- Mustafa, M. Y., Tlili, A., Lampropoulos, G., Huang, R., Jandrić, P., Zhao, J., Salha, S., Xu, L., Panda, S., Kinshuk, López-Pernas, S., & Saqr, M. (2024). A Systematic Review of Literature Reviews on Artificial Intelligence in Education (AIED): A Roadmap to a Future Research Agenda. *Smart Learning Environments*, 11(1), 1-33. https://doi.org/10.1186/s40561-024-00350-5
- Narayanan, S., Ramakrishnan, R., Durairaj, E., & Das, A. (2023). Artificial Intelligence Revolutionizing the Field of Medical Education. *Cureus*. https://doi.org/10.7759/cureus.49604
- Naveen, P., & Trojovský, P. (2024). Overview and Challenges of Machine Translation for Contextually Appropriate Translations. *iScience*, 27(10), 1-25. https://doi.org/10.1016/j.isci.2024.110878
- Nguyen, T. (2024). ChatGPT in Medical Education: A Precursor for Automation Bias? *JMIR Medical Education*, 10, e50174. https://doi.org/10.2196/50174
- Nissen, L., Rother, J. F., Heinemann, M., Reimer, L. M., Jonas, S., & Raupach, T. (2025). A Randomised Cross-Over Trial Assessing the Impact of AI-Generated Individual Feedback on Written Online Assignments for Medical Students. *Medical Teacher*, 1-7. https://doi.org/10.1080/0142159X.2025.2451870
- Ogden, K., Kilpatrick, S., & Elmer, S. (2023). Examining the Nexus Between Medical Education and Complexity: A Systematic Review to Inform Practice and Research. *BMC Medical Education*, 23(1), 1-15. https://doi.org/10.1186/s12909-023-04471-2
- PCS. (2025). PCS: Patient Communication Simulators. https://www.pcs.ai/alex/
- Pirri, C., Stecco, C., Porzionato, A., Boscolo-Berto, R., Fortelny, R. H., Macchi, V., Konschake, M., Merigliano, S., & De Caro, R. (2021). Forensic Implications of Anatomical Education and Surgical Training With Cadavers. Frontiers in Surgery, 8, 1-10. https://doi.org/10.3389/fsurg.2021.641581

- Potter, L., & Jefferies, C. (2024). Enhancing Communication and Clinical Reasoning in Medical Education: Building Virtual Patients With Generative AI. *Future Healthcare Journal*, 11, 100043. https://doi.org/10.1016/j.fhj.2024.100043
- Preiksaitis, C., & Rose, C. (2023). Opportunities, Challenges, and Future Directions of Generative Artificial Intelligence in Medical Education: Scoping Review. *JMIR Medical Education*, *9*, 1-13. https://doi.org/10.2196/48785
- Resnik, D. B., & Hosseini, M. (2024). The Ethics of Using Artificial Intelligence in Scientific Research: New Guidance Needed for a New Tool. *AI and Ethics*, 1-23. https://doi.org/10.1007/s43681-024-00493-8
- Riddle, E. W., Kewalramani, D., Narayan, M., & Jones, D. B. (2024). Surgical Simulation: Virtual Reality to Artificial Intelligence. *Current Problems in Surgery*, 61(11), 1-55. https://doi.org/10.1016/j.cpsurg.2024.101625
- Saleem, N., Mufti, T., Sohail, S. S., & Madsen, D. Ø. (2024). ChatGPT as an Innovative Heutagogical Tool in Medical Education. Cogent Education, 11(1), 1-10. https://doi.org/10.1080/2331186X.2024.2332850
- Satapathy, P., Hermis, A. H., Rustagi, S., Pradhan, K. B., Padhi, B. K., & Sah, R. (2023). Artificial Intelligence in Surgical Education and Training: Opportunities, Challenges, and Ethical Considerations Correspondence. *International Journal of Surgery*, 109(5), 1543-1544. https://doi.org/10.1097/JS9.0000000000000387
- Schubert, T., Oosterlinck, T., Stevens, R. D., Maxwell, P. H., & van der Schaar, M. (2025). AI Education for Clinicians. *eClinicalMedicine*, 79, 1-7. https://doi.org/10.1016/j.eclinm.2024.102968
- Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. *Pharmaceutics*, 16(10), 1-27. https://doi.org/10.3390/pharmaceutics16101328
- Singh, N., Gunjan, V. K., & Nasralla, M. M. (2022). A Parametrized Comparative Analysis of Performance Between Proposed Adaptive and Personalized Tutoring System "Seis Tutor" With Existing Online Tutoring System. *IEEE Access*, 10, 39376-39386. https://doi.org/10.1109/access.2022.3166261
- Stretton, B., Kovoor, J., Arnold, M., & Bacchi, S. (2024). ChatGPT-Based Learning: Generative Artificial Intelligence in Medical Education. *Medical Science Educator*, 34(1), 215-217. https://doi.org/10.1007/s40670-023-01934-5
- Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2024). AI-Driven Adaptive Learning for Sustainable Educational Transformation. *Sustainable Development*. https://doi.org/10.1002/sd.3221
- Sun, W., Jiang, X., Dong, X., Yu, G., Feng, Z., & Shuai, L. (2024). The Evolution of Simulation-Based Medical Education Research: From Traditional to Virtual Simulations. *Heliyon*, 10(15), 1-14. https://doi.org/10.1016/j.heliyon.2024.e35627
- Tang, Y. M., Chau, K. Y., Kwok, A. P. K., Zhu, T., & Ma, X. (2022). A Systematic Review of Immersive Technology Applications for Medical Practice and Education - Trends, Application Areas, Recipients, Teaching Contents, Evaluation Methods, and Performance. *Educational Research Review*, 35, 1-22. https://doi.org/10.1016/j.edurev.2021.100429
- Thomae, A. V., Witt, C. M., & Barth, J. (2024). Integration of ChatGPT Into a Course for Medical Students: Explorative Study on Teaching Scenarios, Students' Perception, and Applications. *JMIR Medical Education*, 10, 1-10. https://doi.org/10.2196/50545
- Vaughn, J., Ford, S. H., Scott, M., Jones, C., & Lewinski, A. (2024). Enhancing Healthcare Education: Leveraging ChatGPT for Innovative Simulation Scenarios. *Clinical Simulation In Nursing*, 87, 101487. https://doi.org/10.1016/j.ecns.2023.101487
- Xia, Q., Weng, X., Ouyang, F., Lin, T. J., & Chiu, T. K. F. (2024). A Scoping Review on How Generative Artificial Intelligence Transforms Assessment in Higher Education. *International Journal of Educational Technology in Higher Education*, 21(1). https://doi.org/10.1186/s41239-024-00468-z
- Xiao, J., Bozkurt, A., Nichols, M., Pazurek, A., Stracke, C. M., Bai, J. Y. H., Farrow, R., Mulligan, D., Nerantzi, C., Sharma, R. C., Singh, L., Frumin, I., Swindell, A., Honeychurch, S., Bond, M., Dron, J., Moore, S., Leng, J., van Tryon, P. J. S., et al. (2025). Venturing into the Unknown: Critical Insights into Grey Areas and Pioneering Future Directions in Educational Generative AI Research. *TechTrends*. https://doi.org/10.1007/s11528-025-01060-6
- Yang, Y.-Y., & Shulruf, B. (2019). An Expert-Led and Artificial Intelligence System-Assisted Tutoring Course to Improve the Confidence of Chinese Medical Interns in Suturing and Ligature Skills: A Prospective Pilot Study. *Journal of Educational Evaluation for Health Professions*, 16, 7. https://doi.org/10.3352/jeehp.2019.16.7

- Yazdani, S., & Abardeh, M. H. (2019). Five Decades of Research and Theorization on Clinical Reasoning: A Critical Review. *Advances in Medical Education and Practice*, 10, 703-716. https://doi.org/10.2147/amep.S213492
- Zarei, M., Eftekhari Mamaghani, H., Abbasi, A., & Hosseini, M.-S. (2024). Application of Artificial Intelligence in Medical Education: A Review of Benefits, Challenges, and Solutions. *Medicina Clínica Práctica*, 7(2), 1-5. https://doi.org/10.1016/j.mcpsp.2023.100422
- Zhai, C., Wibowo, S., & Li, L. D. (2024). The Effects of Over-Reliance on AI Dialogue Systems on Students' Cognitive Abilities: A Systematic Review. *Smart Learning Environments*, 11(1), 1-37. https://doi.org/10.1186/s40561-024-00316-7
- Zidoun, Y., & Mardi, A. E. L. (2024). Artificial Intelligence (AI)-Based Simulators Versus Simulated Patients in Undergraduate Programs: A Protocol for a Randomized Controlled Trial. *BMC Medical Education*, 24(1), 1-7. https://doi.org/10.1186/s12909-024-06236-x

KEY TERMS AND DEFINITIONS

Artificial Intelligence: The simulation of human intelligence processes by machines to perform tasks such as learning, reasoning, and problem-solving.

ChatGPT: A conversational AI developed by OpenAI that generates human-like responses using large language models.

Generative AI: A type of artificial intelligence that creates new content—such as text, images, or audio—based on learned data patterns.

Large Language Models: Advanced AI systems trained on massive text datasets to understand and generate natural language with contextual accuracy.

Medical Education: The structured process of teaching and learning that prepares individuals for medical practice through knowledge acquisition and skill development.

Medical Training: The practical component of medical education involving clinical experience, simulations, and supervised patient care.

Medicine: The science and practice of diagnosing, treating, and preventing illness to improve health and well-being.

RELATED RESEARCH

Book Chapter

Effective Integration of Artificial Intelligence in Medical Education: Practical Tips and Actionable Insights

Garcia, M. B., Arif, Y. M., Khlaif, Z. N., Zhu, M., de Almeida, R. P. P., de Almeida, R. S., & Masters, K. (2024). *Transformative Approaches to Patient Literacy and Healthcare Innovation*. https://doi.org/10.4018/979-8-3693-3661-8.ch001.

Research Article

"ChatGPT 4.0 Ghosted Us While Conducting Literature Search:" Modeling the Chatbot's Generated Non-Existent References Using Regression Analysis

Acut, D. P., Malabago, N. K., Malicoban, E. V., Galamiton, N. S., & Garcia, M. B. (2025). *Internet Reference Services Quarterly*, 29(1), 27-54. https://doi.org/10.1080/10875301.2024.2426793.

Research Article

ChatGPT as a Virtual Dietitian: Exploring its Potential as a Tool for Improving Nutrition Knowledge

Garcia, M. B. (2023). Applied System Innovation, 6(5), 1-18. https://doi.org/10.3390/asi6050096.

LET'S COLLABORATE!

If you are looking for research collaborators, please do not hesitate to contact me at mbgarcia@feutech.edu.ph.

ABOUT THE CORRESPONDING AUTHOR:

Manuel B. Garcia is a professor of information technology and the founding director of the Educational Innovation and Technology Hub (EdITH) at FEU Institute of Technology, Manila, Philippines. His interdisciplinary research interest includes topics that, individually or collectively, cover the disciplines of education and information technology. He is a licensed professional teacher and a proud member of the National Research Council of the Philippines – an attached agency to the country's Department of Science and Technology (DOST-NRCP).

