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Abstract—Relative humidity is an important environmental 

parameter and is widely used in various fields. Prediction of 
humidity levels is crucial for climate modeling, heat stress, air 
quality forecasting, and public health. Machine learning 
techniques have shown potential for predicting humidity due to 
their nonlinear nature. However, there is a research gap in 
humidity prediction in the Philippines, specifically the lack of 
studies utilizing the available parameters provided by 
PAGASA, presenting an opportunity for further investigation 
and development of models for predicting humidity levels in the 
country. In this study, the researchers used a publicly available 
dataset from PAGASA containing weather measurements from 
2000 to 2022 in the Philippines. Various machine learning 
models were trained and tested, with hyperparameter tuning 
performed using Bayesian optimization. The Gaussian Process 
Regression model with optimized hyperparameters achieved the 
best performance in predicting relative humidity, with the 
lowest RMSE and highest R-squared values. This study provides 
a reliable way to predict humidity levels in the Philippines based 
on weather parameters. 

Keywords—Gaussian Process Regression, machine learning, 
PAGASA, Philippines, relative humidity  

I. INTRODUCTION 

Relative humidity refers to the level of water saturation in 
the air [1] and has numerous applications in fields such as 
metrology, meteorology, climatology, and engineering [2]. 
Along with temperature and pressure, it is a significant 
environmental factor and has a connection with particle 
formation [3]. The magnitude of relative humidity depends 
not only on the amount of water vapor in the air but also on 
how temperature and water vapor interact [4]. 

Humidity prediction holds great importance for various 
reasons. The presence of water vapor in the atmosphere, acting 
as humidity, possesses strong greenhouse effects, making it 
crucial to monitor humidity levels in tropical regions for 
global climate considerations [5]. Recent studies have 
underscored the significance of humidity in determining 
extreme wet-bulb temperatures, which serve as indicators of 

heat stress [6]. Numerous algorithms have been developed to 
estimate air humidity by utilizing temperature and 
precipitation data [7]. When combined with other climatic 
factors such as temperature and ultraviolet radiation, humidity 
exerts a notable influence on the skin [8]. Furthermore, it 
contributes to the correlation between heat and mental health 
[9]. 

The use of machine learning-based prediction strategies 
has gained considerable attention in predicting relative 
humidity because of their ability to handle nonlinearity. 
Machine learning techniques are crucial for air quality 
forecasting and the efficient design of air-dependent energy 
systems [10]. It is essential to have a proper understanding of 
the relationships between meteorological and climatological 
variables before implementing machine learning models in 
weather prediction and climate modeling [11]. However, there 
is a current research gap on humidity prediction in the 
Philippines, specifically the lack of studies utilizing the 
available parameters provided by PAGASA. This gap 
presents an opportunity for further investigation into 
developing a best-fit and reliable model for predicting 
humidity levels in the country. Such models would be 
beneficial in various applications such as agriculture, public 
health, and disaster preparedness. Moreover, filling this void 
in the research could result in improved comprehension of the 
variations and patterns in humidity levels within the 
Philippines, which could provide insights into the impacts of 
climate change and inform climate adaptation strategies. 
Therefore, it is important to explore and develop machine 
learning models that can anticipate humidity levels in the 
Philippines using the available parameters provided by 
PAGASA. 

II. RELATED WORKS 

In [12], the importance of controlling temperature and 
relative humidity for crop cultivation is highlighted. The study 
uses a multilayer perceptron (MLP) to predict air temperature 
and relative humidity for a greenhouse cultivating mango. The 
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MLP model incorporates various inputs, such as information 
gathered from inside and outside the greenhouse, and the 
configured and operational values of environmental control 
equipment. The MLP's performance was tested by comparing 
three-day data from each of the four seasons in Korea. The 
MLP was optimized for air temperature and relative humidity, 
but its accuracy decreased as the prediction time increased. 
The study emphasizes the need for collecting more data from 
different greenhouses and modifying the neural network 
structure for generalization.  

In [13], a study was conducted to compare two models for 
forecasting temperature and humidity in an open office. The 
models were a linear ARX model and a nonlinear NNARX 
model. Both models were developed and verified using 
climate data over a three-month period and aimed to forecast 
for various timeframes, from 30 minutes to 3 hours ahead. The 
study found that the nonlinear NNARX model performed 
better than the linear ARX model and had the potential for 
integration into HVAC plant controllers, specifically adaptive 
control systems. 

In [14], the study focuses on predicting relative humidity 
(RH) using XGBoost combined with SVR, RF, and MARS 
models. The study evaluates the performance of the models at 
two stations in Iraq, Kut, and Mosul, using numeric and 
graphic indicators. The results showed that all models were 
effective in predicting RH, and the XGBoost approach was 
successful in abstracting essential parameters for RH 
simulation with fewer input parameters. The most precise 
prediction outcomes were obtained using the RF model at Kut 
station, which utilized evaporation and maximum air 
temperature parameters, whereas the MARS model, which 
used all climate parameters, produced the best predictions at 
Mosul station. The study suggests that the proposed coupled 
machine learning models have the potential to model RH in 
semi-arid environments. 

In [15], researchers explore the prediction of indoor air 
temperature (IAT) and indoor relative humidity (IRH) in 
closed barns for livestock animals. The study compares the 
performance of several machine learning models, such as 
MLR, SVR, DTR, RFR, and MLP, in forecasting IAT and 
IRH using external environmental data. Three different input 
datasets are utilized, and the models are evaluated based on 
various performance metrics. The study highlights the 
superior performance of RFR models in predicting both IAT 
and IRH, especially when using the S3 input dataset. The 
importance of feature selection from the input data is 
emphasized for achieving accurate predictions. The results 
demonstrate the potential of machine learning models in 
predicting IAT and IRH in barns with natural ventilation. 

In [16], the authors conducted a study on precise and 
dependable temperature and humidity management in 
industrial manufacturing. They developed an enhanced 
forecasting model based on BPNN to predict IAT and IRH. 
The study was conducted in Chongqing, China, known for its 
humid and hot summers and cold winters. The model was 
created utilizing an industry-specific cloud database, and the 
findings revealed that the predictions for IT and IH by the 
model were strongly correlated with the actual data. The 
approach proposed in this study proved to be a potent means 
of temperature prediction and can be implemented for 
forecasting and regulating indoor temperature and relative 
humidity in industrial production. This could result in 
consistent enhancements in productivity. 

In [17], the study utilized artificial neural networks 
(ANNs) and multiple regression analysis to develop models 
for forecasting daily mean indoor air temperature (IAT) and 
indoor relative humidity (IRH) in an education building. The 
models were trained and tested using various parameters, 
including outdoor climate conditions, day of the year, and 
indoor thermal comfort. The results indicated that despite 
limited data, the ANN model demonstrated proficiency in 
predicting IAT and IRH parameters in educational buildings. 
Furthermore, the ANN model outperformed the multiple 
regression analysis model in terms of accuracy. This research 
highlights the potential of ANNs in predicting indoor thermal 
comfort conditions, estimating energy needs, and optimizing 
the sizing of HVAC systems. 

In [18], the authors focused on the prediction of relative 
humidity for precipitation forecasting. They compared the 
performance of ARIMA and LSTM models using 
meteorological data from a county in China. The study found 
that the ARIMA model provided better results in predicting 
relative humidity than the LSTM model. The study also 
analyzed the factors that affect the prediction accuracy of both 
models, including the length of the training data and the 
hyperparameters of the models. The findings can help 
improve the prediction accuracy of weather forecasting 
models, particularly for areas with a high risk of precipitation.  

In [19], a study evaluates an LSTM-based model for 
predicting relative humidity (RH) using observed weather 
data from a synoptic station location. The LSTM model is 
trained on two years of climate data and shows strong 
performance in forecasting complex, non-stationary 
univariate time series of RH. The results indicate that the 
LSTM model outperforms traditional forecasting methods and 
demonstrates its usefulness in predicting RH records. The 
study emphasizes the potential of using machine learning 
approaches and computational physics learning theory in 
weather and climate prediction. The findings may contribute 
to improving the accuracy of weather forecasting and 
understanding the underlying mechanisms of climate change.  

In [20]. the study investigates the use of MARS and M5T 
models for relative humidity prediction in Pakistan. The 
findings indicate that the MARS model demonstrated superior 
performance compared to the M5T model across all 
meteorological stations. Among the different input scenarios, 
scenario S6 yielded the best results. During testing, the MARS 
model exhibited slightly better performance than the M5T 
model, but both models performed better during training than 
in testing. The study emphasizes the need for future research 
to employ machine learning tools in predicting additional 
meteorological variables in high-altitude basins.. 

In [21], the relationship between Industry 4.0 and Machine 
Learning is discussed, with predictive maintenance being a 
key application. The paper focuses on the use of the RF 
method to predict relative humidity in the environment of a 
smart factory. To ensure data reliability and interoperability, 
IIoT devices based on the oneM2M standard platform were 
used to collect data. The implementation of the RF method 
resulted in an accuracy of 82.49% in predicting relative 
humidity. This research is expected to benefit the 
manufacturing industry by reducing maintenance costs and 
increasing efficiency.  

In [22], the study focuses on utilizing feedforward neural 
networks (FFNN) to predict relative humidity values in 
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Malaysia based on weather records. The proposed model 
predicts hourly relative humidity using inputs such as 
sunshine ratio and cloud cover. The model's accuracy is 
evaluated using three statistical parameters, namely MAPE, 
MBE, and RMSE. The findings demonstrate that the FFNN 
model effectively predicts hourly relative humidity, exhibiting 
low values for MAPE, RMSE, and MBE. The model also 
performs well in predicting daily and monthly relative 
humidity values, as indicated by the reported MAPE values. 
This research highlights the potential of FFNNs for accurate 
relative humidity predictions, particularly in tropical climates 
like Malaysia. 

III. RESEARCH METHODS 

A. Dataset 

The dataset used in the study consisted of daily 
measurements of various weather parameters such as 
maximum, minimum, and mean temperature, wind speed, 
wind direction, cloud cover, rainfall, and relative humidity. 
The dataset spanned from the year 2000 to 2022, providing a 
long-term perspective on the weather conditions in the 
Philippines. It is publicly available records in the Philippines, 
specifically from PAGASA. PAGASA is responsible for 
evaluating and predicting the weather, issuing alerts for floods 
and typhoons, providing public weather forecasts and advice, 
and offering specialized information services related to 
weather conditions[23]. Table I shows the list of attributes 
used in the study. 

TABLE I.  LIST OF ATTRIBUTES 

Attributes Unit Description 
Maximum 

Temperature 

oC Highest recorded temperature 
obtained at the main standard time 
of observations. 

Minimum 
Temperature 

oC Lowest recorded temperature 
obtained at the main standard time 
of observations. 

Mean 
Temperature 

oC The sum of Tmax and 
Tmin divided by two. 

Rainfall 
Amount 

mm Measurement of the vertical depth 
of water that reaches the ground and 
is obtained from PAGASA stations 
using an 8-inch rain gauge. 

Wind Speed m/s Average speed of the wind observed 
during a 10-minute interval. 

Wind 
Direction 

Degree (o) 
relative to 
true North 

The nearest 10-degree direction of 
the wind's origin relative to true 
north. 

Cloud Cover okta Amount of cloud present in the sky 
Relative 
Humidity 

% The ratio of actual vapor pressure to 
the saturation vapor pressure of the 
air at a specific height (1.25-2.00 m 
above the ground) corresponding to 
the prevailing temperature. 

 

B. Data Preprocessing 

1) Data Cleaning: This dataset has undergone an 
extensive data-cleaning process to ensure its quality.  
Faulty data undermines the reliability of accurate results and 
algorithms [24]. First, any missing values were identified, 
and either imputed or removed based on the extent of the 
missingness. Duplicates were removed to avoid skewing the 
analysis results. Incorrectly formatted data, such as 
inconsistent date formats or string representations, were 
standardized for consistency. Any data inconsistencies were 

resolved to ensure the data is compatible with the chosen 
analysis method. The resulting clean dataset was then used 
for further analysis, ensuring that the findings were accurate 
and reliable. 

2) Validation scheme and data splitting: In addition to 
the 70:30 data splitting ratio, 5-fold cross-validation was also 
used to validate the models built on the dataset. This process 
involved dividing the training data into five equal parts, 
training the models on four of these parts, and then evaluating 
their performance on the fifth part. This was repeated five 
times, with each part serving as the validation set once. The 
results were then averaged, providing an estimate of the 
model's performance on unseen data. The use of cross-
validation helped to mitigate any potential issues with the 
data-splitting process, ensuring that the models were robust 
and generalizable. Additionally, it provided a more 
comprehensive assessment of model performance, allowing 
for a more reliable evaluation of their accuracy and predictive 
power. The combination of data splitting and cross-validation 
allowed for a thorough and robust validation scheme, 
ensuring that the models built on the dataset were accurate, 
reliable, and could generalize well to new, unseen data. 

C. Correlation 

The correlation coefficients between relative humidity 
(RH) and different weather variables in Fig. 1. It provides 
insight into how humidity levels are related to other weather 
conditions. The negative correlation between RH and 
temperature variables (TMAX, TMIN, TMEAN) suggests 
that as the temperature increases, the relative humidity 
decreases. This is because warm air can hold more moisture 
than cool air, so as the temperature rises, the air becomes 
more capable of holding moisture, resulting in lower relative 
humidity. The weak or insignificant negative correlation 
between RH and wind speed suggests that wind speed may 
not have a significant impact on relative humidity. The 
positive correlation between RH and cloud cover and rainfall 
indicates that higher humidity levels are associated with 
cloudier and wetter weather conditions. The positive 
correlation between RH and wind direction suggests that 
wind direction may be a factor in determining humidity 
levels, although the strength of this relationship is weak. 

 

 
Fig. 1. Correlation Coefficient Heatmap. 
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While the correlation coefficient between relative 
humidity and some variables may be weak or insignificant, it 
is still possible that these variables significantly impact 
humidity levels in the real world. In practice, machine 
learning algorithms can help capture complex relationships 
between variables that may not be immediately apparent from 
simple statistical analysis. Therefore, it is still possible and 
even advisable to include all available variables in the 
training dataset, even if some have weak correlations with the 
response variable. This can help ensure that the model 
captures all possible factors that may influence the outcome 
and improve its predictive power.  

D. Training and Testing Dataset 

 In this section, various machine learning models and their 
variations were trained and tested to determine which one 
provided the best accuracy for predicting humidity levels. The 
models were trained on a dataset containing weather variables. 
The accuracy of each model was evaluated based on how well 
it predicted the relative humidity values in a test dataset. This 
process involved analyzing the accuracy of each model 
without any hyperparameter adjustments.  

RMSE, R-squared, MAE, and MSE are important 
parameters in regression models for several reasons. Firstly, 
RMSE quantifies the average magnitude of the residuals, 
providing a measure of how well the model fits the data and 
allowing for easy comparison across different models. R-
squared, on the other hand, represents the proportion of 
variance in the dependent variable that is explained by the 
independent variables, indicating the model's goodness of fit. 
Lastly, MAE and MSE offer insights into the absolute and 
squared errors, respectively, enabling a more comprehensive 
understanding of the model's predictive accuracy and helping 
to assess the impact of outliers. Together, these metrics aid in 
evaluating and comparing the performance of regression 
models. Table II shows the summary of the machine learning 
model results. 

To determine if there are significant differences in the 
performance across the models, evaluation measures (errors) 
were subjected to the ANOVA test. An f-value of 0.067, with 
a p-value of 1.00, was computed. Since the p-value is not less 
than the desired 0.05 level of significance, it was found that 
there are no significant differences in the performance of 
modelling relative humidity across models. 

However, the ensemble (bagged trees) was considered the 
best-fit model since it has the least RMSE, MSE, and MAE 
and with the highest R squared. 

E. Hyperparameter Tuning 

The selection of the best values for the hyperparameters 
that govern the behavior of a machine learning model during 
the training process is known as hyperparameter tuning. In this 
study, the process involves selecting the best combination of 
hyperparameters to optimize the model's performance on a 
given dataset using MATLAB Regression Learner App. It is 
essential for building effective machine learning models that 
can make accurate predictions on new, unseen data.  

The hyperparameter tuning using Bayesian optimization 
was used to improve the performance of five different 
algorithms – DT, SVM, GPR, Ensemble, and NN- for 
predicting humidity level. The tuning process involved 

selecting the best combination of hyperparameters for each 
algorithm on a 70:30 training and testing dataset split. 

TABLE II.  SUMMARY OF MACHINE LEARNING REGRESSION MODEL 
RESULT 

Model 
 

5 cross-fold validation; 70:30 train test split 
RMSE R-

squared 
MAE MSE 

Linear Regression 
(Linear) 

4.067556 0.603732 3.136209 16.54501 

Linear Regression 
(Interactions Linear) 

3.982538 0.620124 3.05281 15.86061 

Linear Regression 
(Robust Linear) 

4.078521 0.601592 3.118904 16.63433 

Stepwise Linear 
Regression 

3.988475 0.61899 3.060174 15.90794 

Tree (Fine Tree) 4.289579 0.559291 3.253593 18.40049 
Tree (Medium Tree) 3.945899 0.627081 2.984066 15.57012 
Tree (Coarse Tree) 3.879908 0.63945 2.956888 15.05369 
SVM (Linear SVM) 4.125789 0.592304 3.145419 17.02213 
SVM (Quadratic 
SVM) 

3.860265 0.643092 2.917154 14.90164 

SVM (Cubic SVM) 3.860092 0.643124 2.881756 14.90031 
SVM (Fine Gaussian 
SVM) 

4.54657 0.504903 3.413419 20.6713 

SVM (Medium 
Gaussian SVM) 

3.774332 0.658805 2.871859 14.24559 

SVM (Coarse 
Gaussian SVM) 

3.885012 0.638501 2.95457 15.09332 

Ensemble (Boosted 
Trees) 

5.009305 0.398996 4.161789 25.09313 

Ensemble (Bagged 
Trees) 

3.634746 0.683575 2.751787 13.21138 

Gaussian Process 
Regression (Squared 
Exponential GPR) 

3.749861 0.663215 2.867918 14.06146 

Gaussian Process 
Regression (Matern 
5/2 GPR) 

3.724406 0.667772 2.847139 13.8712 

Gaussian Process 
Regression 
(Exponential GPR) 

3.721019 0.668376 2.824556 13.84598 

Gaussian Process 
Regression (Rational 
Quadtraic GPR) 

3.737151 0.665494 2.857863 13.9663 

Neural Network 
(Narrow Neural 
Network) 

3.774617 0.658754 2.890967 14.24773 

Neural Network 
(Medium Neural 
Network) 

4.036016 0.609853 3.111551 16.28942 

Neural Network 
(Wide Neural 
Network) 

3.902902 0.635164 2.997245 15.23264 

Neural Network 
(Bilayered Neural 
Network0 

3.669717 0.677457 2.82762 13.46683 

Neural Network 
(Trilayered Neural 
Network) 

3.657023 0.679684 2.800738 13.37382 

Kernel (SVM 
Kernel) 

4.360765 0.544542 3.281063 19.01627 

Kernel (Least 
Squares Regression 
Kernel) 

4.409173 0.534375 3.254083 19.4408 

 

After training and testing the five algorithms with the 
tuned hyperparameters, the results were compared in Table 
III, and it was found that Gaussian Process Regression had the 
best performance in predicting crop yield. This means that, 
based on the selected hyperparameters, GPR was able to 
produce the most accurate predictions on the test dataset 
compared to the other algorithms. 
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TABLE III.  SUMMARY OF M. L. REGRESSION MODEL RESULTS  

 
Similarly, evaluation measures (errors) were subjected to 

an ANOVA test to determine if there are significant 
differences in the performance across the models. Results 
show an f-value of 0.024 and a p-value of 1.00. This indicates 
the performances of the models are not statistically 
significant.  However, considering RMSE, MSE, MAE, and 
R squared, Gaussian Process Regression was considered as 
the best-fit model. 

IV. RESULTS AND DISCUSSION 

A. Model Performance Visualization 

The performance of various machine learning models can 
be effectively visualized using Predicted versus Actual plots. 
These plots have the actual values of the outcome variable on 
the x-axis and the predicted values of the outcome variable on 
the y-axis. Ideally, the plotted points should be near the 
diagonal line, which represents a close match between the 
predicted and actual values. The Predicted versus Actual plots 
of the five models are presented in Fig. 2, Fig. 3, Fig. 4, Fig. 
5, and Fig. 6. 

Based on the results shown in Table III, the Gaussian 
Process Regression (GPR) model had the lowest RMSE and 
highest R-squared values, indicating that it performed the best 
overall at predicting the outcome variable. This is reflected in 
Fig. 4, where we can see that the points are more tightly 
clustered around the diagonal line compared to the other 
models. This indicates that the GPR model is able to best-fit 
in predictions.  

 
Fig. 2. Predicted versus Actual Plots of Tree 

B. Experimental results 
The hyperparameters for the Gaussian Process Regression 

(GPR) model were optimized using 5-fold cross-validation, a 
70:30 train-test split, and Bayesian optimization. The 
optimized hyperparameters include Rational Isotropic 

Quadratic kernel function, a kernel scale of 0.4803, a sigma 
value of 0.0067, and a linear basis function. The data was not 
standardized in this optimization. By optimizing these 
hyperparameters, the GPR model was able to achieve better 
performance in predicting the outcome variable, compared to 
using default hyperparameters. Details of the hyperparameters 
can be seen in Table IV. 

 
Fig. 3. Predicted versus Actual Plots of SVM 

 
Fig. 4. Predicted versus Actual Plots of GPR 

 
Fig. 5. Predicted versus Actual Plots of Ensemble 

 
Fig. 6. Predicted versus Actual Plots of Neural Network 

Model 5 cross-fold validation; 70:30 train test split; 
Bayesian Optimization 

 RMSE R-
squared 

MAE MSE 

Linear Regression 
(Linear) 

4.067556 0.603732 3.136209 16.54501 

Tree 3.825692 0.649456 2.906104 14.63592 
SVM 3.740041 0.664977 2.849802 13.98791 
Gaussian Process 
Regression 

3.557933 0.696808 2.678641 12.65888 

Ensemble 3.670035 0.677401 2.773259 13.46916 
Neural Network 3.668477 0.677675 2.815893 13.45773 
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V. CONCLUSION AND FUTURE WORK 

We used machine learning algorithms to predict relative 
humidity levels based on weather variables such as 
temperature, wind speed, wind direction, cloud cover, and 
rainfall. After cleaning the data and validating the models 
using a 70:30 data splitting ratio and 5-fold cross-validation, 
we trained various machine learning algorithms to predict 
humidity levels. To improve their performance, we used 
Bayesian optimization to tune hyperparameters for five 
algorithms, including Decision Tree, Gaussian Process 
Regression (GPR), Support Vector Machines (SVM), 
Ensemble, and Neural Network. The GPR algorithm with 
optimized hyperparameters achieved the best performance in 
predicting humidity levels.  

TABLE IV.  HYPERPARAMETER VALUES 

Hyperparameter Value 
Sigma 0.0067 

Basis function Linear 
Kernel function Rational Isotropic Quadratic 

Kernel scale 0.4803 
Standardize data FALSE 

 

In future work, the focus should be on deploying the best-
performing machine learning algorithm for humidity 
prediction in the Philippines. This would involve building a 
robust and scalable application that utilizes the selected 
algorithm to provide users with real-time or near-real-time 
humidity forecasts. Additionally, integrating data 
visualization and user-friendly interfaces would enhance the 
usability and accessibility of the application, making it 
valuable for various stakeholders such as farmers, healthcare 
professionals, and disaster management authorities. 
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