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Abstract— Wind power is a challenge in power generation. 

The tortuous process stages in generating voltage become a 

significant problem to be solved properly. One indicator of the 

process is the determination of the right wind speed because it 

always changes at any time and under circumstances. For this 

reason, accurate predictions are needed so as to maintain the 

smooth integration of wind power into the overall system. 

Machine learning is used as a promising approach to dealing 

with wind intermittent power because wind speed prediction 

methods have been developed in recent years. This study 

explores climate patterns in the Philippines using data 

collected from PAGASA. The data is trained and tested with a 

machine learning model to predict wind speed. This research 

resulted in the Gaussian Process Regression (GPR) model 

outperforming other models and is very suitable for datasets in 

achieving accurate and reliable predictions. 

Keywords— gaussian process regression, machine learning 

models, PAGASA, wind power, wind speed prediction 

I. INTRODUCTION 

Traditional energy sources are very depleted by the 
influence of environmental factors. Currently, a new energy 
source that can be used widely is urgently needed, namely 
wind power. Wind power has the characteristics of being 
clean, efficient and sustainable so that it becomes an 
important contributor in electricity generation [1][2]. 
However, utilities that largely rely on wind energy face 
considerable issues since wind power is unreliable [3]. 
Accurately predicting wind speeds is essential to optimize 
the utilization of wind energy, determine appropriate turbine 
sizes, and select suitable sites [4]. 

Machine learning techniques have shown promise in 
addressing the intermittency of wind power by accurately 
forecasting wind speeds. This capability enhances system 
safety, optimizes dispatch, and minimizes economic losses 
[5][6]. Wind speed prediction is very important in supporting 
turbine load and scheduling effectively to optimize operating 
costs. Wind speed forecasting is essential for predicting load 
and scheduling wind turbines effectively, which reduces 
spinning reserve and optimizes operating costs [4][6]. A 

variety of methods for predicting wind speed and power have 
been documented in recent research [3]. 

The stochastic and intermittent nature of wind power 
generation creates obstacles to its widespread adoption [7]. 
Uncertainties associated with wind can impact system 
reliability, power quality, and raise concerns about 
integrating wind power into the grid, including issues related 
to balancing, management, and reserve capacities [7]. There 
is a non-linear correlation between wind speed and the 
electric power generated by the turbine which has an impact 
on errors in wind-driven systems [1]. Despite this, wind 
energy has expanded quickly and is advancing toward 
becoming a major worldwide energy source. Therefore, for 
maximizing the use of wind energy and seamlessly 
integrating wind power into the power system, precise wind 
speed prediction utilizing machine learning techniques is 
essential [8][9]. The goal of this study is to forecast wind 
speed using several machine learning algorithms, assess the 
effectiveness of those forecasts using metric parameters, and 
determine the best reliable model for wind speed prediction. 

II. RELATED WORKS 

In [2], a study was conducted to evaluate the 
effectiveness of SVM and MLP models for wind speed 
prediction. It employed a 12-year wind speed dataset (1970-
1982), which underwent normalization between 0 and 1 to 
enhance performance. This study aims to predict the wind 
speed the next day from the current wind speed data. Various 
system orders ranging from 1 to 11 were examined. The 
findings revealed that, across all system orders, the SVM 
model, utilizing the Gaussian kernel, outperformed the MLP 
model, which employed the Levenberg-Marquardt 
optimization method and backpropagation algorithm. The 
SVM model exhibited superior trend fitting and achieved a 
lower mean squared error (MSE) and came to the conclusion 
that the SVM model was a better predictor. Furthermore, it 
was noted that the computational complexity associated with 
the SVM model was primarily present during the training 
phase, rendering it comparable to classical methods during 
the prediction process.  
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In [10], researchers investigated the potential of ANNs 
for wind speed prediction by utilizing data from multiple 
measuring stations in Turkey. The data was partitioned into 
two sections based on correlation coefficients among the 
stations. Notably, the ANN method demonstrated promising 
results in predicting wind speed, even in the absence of 
topographical or meteorological data. Instead, it leveraged 
data from references for calculating wind speed at the target 
station. The study suggested that selecting measuring stations 
with higher correlation factors could enhance the accuracy of 
the ANN method. This approach holds significant potential 
for wind speed prediction and can be extended to address 
similar forecasting challenges. 

In [11], a Multi-Agent System (MAS) was introduced as 
a wind speed prediction tool. The MAS incorporated 
multiple regression algorithms, such as MLP, RBF, MLR, 
and SVM, to enhance prediction accuracy. To evaluate the 
effectiveness of the MAS method, ten years of real data from 
seven locations in Algeria were utilized. The study employed 
three fusion strategies to combine the individual models. The 
results indicated that this approach has the potential to 
surpass traditional prediction methods, showcasing its 
relevance in various forecasting problems beyond wind 
speed prediction. These applications include wind power 
forecasting and time series forecasting.  

In [12], a hybrid approach was proposed and evaluated to 
tackle the challenge of accurate prediction, which is crucial 
for effective wind farm management and electricity 
generation from wind energy. Utilizing actual wind speed 
statistics from China, the model's accuracy was assessed. 
Notably, the hybrid model demonstrated outstanding 
performance in comparison to other prediction models, 
achieving MAPE values of 12% and 16% for the two 
datasets. This level of accuracy surpasses the existing range 
of 25-40%. However, it is important to acknowledge that the 
applicability of the model is limited to short-term wind speed 
patterns. To further enhance its practicality, future research 
could concentrate on developing a hybrid model that 
integrates additional prediction tools specifically designed 
for monthly or quarterly wind speed prediction. Such 
advancements would provide significant benefits in 
estimating power output and facilitating electricity market 
trading 

In [13], a study evaluates and compares the effectiveness 
of different techniques for wind speed prediction. Four 
statistical methods are assessed in terms of their predictive 
power. The results indicate that the extrapolation technique 
with periodic curve fitting and the use of ANN demonstrate 
effectiveness in predicting wind speed. Conversely, the 
remaining two methods exhibit lower effectiveness. To 
assess the prediction accuracy of each method, the study 
employs the RMSE, with the extrapolation technique with 
periodic curve fitting yielding the lowest RMSE. However, it 
is acknowledged in the article that wind speed prediction can 
be complicated by various factors, making it challenging to 
select an appropriate regression model and achieve an 
effective fit. 

In [14], the study aimed to develop an ANN model 
specifically for prediction in Himachal Pradesh, India. They 
presented the predicted wind speeds for 11 different 
locations, with wind power outputs enabling them to be used 
for tiny lighting applications. A sensitivity test was done to 
assess the model's accuracy and find the right number of 
hidden layer neurons. This analysis led to the establishment 
of an MLP neural network structure of 6-25-1, which 
demonstrated the lowest MAPE. An R-value of 0.98, which 
was highlighted in the study, showed that the constructed 
ANN model was highly accurate in forecasting wind speeds. 
Furthermore, a comparison between wind speeds measured 
by NASA and ground-based measurements highlighted the 
accuracy of the latter in wind resource assessment.  

In [15], accurate speed forecasting, which is essential for 
managing wind farms effectively and producing renewable 
energy, was the subject of research. The study suggested a 
hybrid model that incorporates the EWT, CSA, and Least 
Squares LSSVM approaches to handle the volatility and 
autocorrelation in wind speed data. The EWT method was 
employed to eliminate stochastic volatility and extract 
precise wind speed information. The LSSVM algorithm 
served as the predictor, with CSA optimization of its 
parameters for accurate wind speed forecasts. The hybrid 
model was assessed demonstrating superior forecasting 
capability compared to existing models. The study also 
examined the impact of the LSSVM kernel function on 
prediction accuracy, suggesting potential for further 
improvement. This hybrid approach holds promise for 
enhancing speed prediction, and supporting renewable 
energy production and management. 

In [16], SOM and a network technique are used in a study 
to propose a hybrid computing model that will improve the 
accuracy of wind speed forecast in renewable energy 
systems. The effectiveness of the proposed model is assessed 
using real-time wind data and compared to conventional 
models. The results show that the hybrid model performs 
better than the traditional models, with a reduced RMSE of 
0.0828. This proves its capacity to considerably raise the 
convergence rate and forecast quality of wind speed. The 
study recommends that the hybrid model holds the potential 
for advancing renewable energy systems. Moreover, it 
recommends that future research should focus on further 
enhancing the model's performance and exploring its 
potential applications in the field. 

In [17], The study develops a hybrid wind speed 
forecasting model called SARIMAeLSSVM. By combining 
SARIMA and LSSVM techniques, the proposed model aims 
to achieve higher prediction accuracy compared to 
conventional models. Using monthly wind speed data 
collected from two locations, the performance of the 
SARIMAeLSSVM model is assessed and contrasted with 
that of other models already in use. The study's conclusions 
show that the SARIMAeLSSVM model works better than all 
other models, leading to considerable decreases in three 
statistical errors.The model's performance is further validated 
through a hypothesis test with a 90% confidence level. 
Notably, the proposed hybrid model is characterized by its 
simplicity, computational efficiency, and the requirement of 
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only a small amount of data for error correction. The study's 
findings could benefit wind farm operations and initiatives, 
and the created SARIMAeLSSVM model could be a useful 
tool for enhancing monthly wind speed prediction.  

In [18], The hyper-parameter estimation problem is 
addressed in the research together with the enhancement of 
SVMr for wind speed prediction in a Spanish wind farm. The 
work uses EP and PSO algorithms to optimize the SVMr 
model in order to get around this problem. The performance 
of the optimized model is compared to that of MLP models, 
with MAE used as the performance metric. The findings 
reveal that the proposed evolutionary SVMr system 
outperforms the MLP models, showcasing the effectiveness 
of employing evolutionary computation techniques for 
hyperparameter estimation. The study offers advantages to 
researchers working in this particular field and delivers 
insightful information on how these strategies are applied for 
wind turbine wind speed prediction.  

In [19], the study compares the performance of six 
machine learning models for short-term wind speed 
prediction using data collected from five stations in Tamil 
Nadu, India. These models are assessed based on a variety of 
performance metrics. The findings of the study reveal that 
LDMR demonstrates the highest prediction accuracy among 
the evaluated models. On the other hand, ELM stands out as 
the most computationally efficient model. Consequently, 
LDMR could serve as a benchmark for short-term wind 
speed prediction due to its superior generalization 
performance. The study emphasizes the importance of 
exploring computationally less expensive least squares-based 
models, such as LDMR, in wind speed prediction and other 
hydrological applications. This approach helps to reduce 
computational costs while still maintaining high 
generalization performance. 

III. RESEARCH METHODS 

A. Dataset 

The data used in the study was obtained from a publicly 
available dataset in the Philippines, specifically from 
PAGASA. The dataset covered daily observations spanning 
from the year 2000 to 2022. The data was collected on a 
daily basis, providing a comprehensive overview of the 
climate patterns over the years. The dataset served as a 
reliable and credible information source for the research, 
allowing for accurate analysis and interpretation of the trends 
and patterns observed over the years. The utilization of this 
dataset allowed for an in-depth exploration of the climate 
patterns in the Philippines over the past two decades. 

B. Data Preprocessing 

1) Data Cleaning: The pre-processing steps for the data 
involved removing missing values through the removal 
method. Outliers were cleaned by removing them using a 
moving median detection method, where a threshold factor 
of 3 was used. The moving window type was centered and 
had a window length of 3. The data were normalized using 
the z-score method, with the standard deviation as the z-
score type. Lastly, smoothing was applied using the moving 

mean method, where the smoothing parameter was defined 
by the smoothing factor, which was set to 1. 

2) Feature Selection: The dataset contains 9 features- 
evaporation, pressure, cloud cover, wind direction, 
maximum temperature, minimum temperature, mean 
temperature, relative humidity, rainfall, and 1 target variable 
which is wind speed. 

3) Validation Scheme and Data Splitting: To ensure that 
the model's performance was accurate and reliable, a 10-fold 
cross-validation scheme was implemented. This involved 
splitting the dataset into ten equal parts, with nine of them 
being utilized for training the model and one left for testing 
its performance. This process was repeated ten times, with 
each of the ten parts used as the testing set once. In addition, 
the data was split into an 80:20 ratio for training and testing, 
respectively. This enabled the model to be trained on a 
significant portion of the data, while still retaining enough 
data to test its performance. The combination of these 
validation and splitting methods allowed for a thorough 
evaluation of the model's performance, ensuring its accuracy 
and reliability in predicting outcomes. 

C. Training and Testing 

The research involved the process of training and testing 
a model to analyze and predict outcomes. The training 
process involved using a significant portion of the available 
data to train the model, and the testing process involved 
evaluating the model's performance on the remaining data. 

D. Hyperparameter Tuning 

The research included the process of hyperparameter 
tuning to optimize performance. Hyperparameter tuning is a 
vital step in machine learning where the parameters of the 
model are adjusted to achieve the best possible outcomes. In 
this study, the model's hyperparameters were systematically 
varied and assessed to identify the optimal settings for 
optimal performance. This process involved testing different 
values for each hyperparameter and evaluating the 
corresponding impact on the model's performance. This 
process helped to ensure that the model's performance was 
optimized for the specific task it was designed to perform 
and that the results obtained were as accurate and reliable as 
possible. 

IV. RESULTS AND DISCUSSION 

Table I presents the results of various machine learning 
models. The Matern 5/2 GPR model demonstrated the 
highest R-Squared value and the lowest RMSE, indicating its 
superior performance among other models, followed by 
ensemble methods like bagged trees. On the other hand, 
some of the SVM models and linear regression demonstrated 
lower performance compared to other models. These 
findings underscore the importance of carefully selecting the 
appropriate model for a particular dataset and problem, as 
this can significantly impact the model's accuracy and 
performance. Results obtained without hyperparameter 
tuning. 
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TABLE I.  SUMMARY OF MACHINE LEARNING REGRESSION MODEL 
RESULTS 

Model 

10 cross-fold validation, 80:20 train-test 

ratio 

RMSE Rsquared MSE MAE 

Linear Regression (Linear) 0.01064 0.979915 0.000113 0.007812 
Linear Regression 
(Interactions Linear) 

0.004758 0.995983 2.26E-05 0.003813 

Linear Regression (Robust 
Linear) 

0.011265 0.977482 0.000127 0.007544 

Stepwise Linear 
Regression 

0.00478 0.995946 2.28E-05 0.003808 

Tree (Fine Tree) 0.002444 0.99894 5.98E-06 0.001422 
Tree (Medium Tree) 0.003552 0.997761 1.26E-05 0.002278 
Tree (Coarse Tree) 0.008545 0.987045 7.30E-05 0.006394 
SVM (Linear SVM) 0.012733 0.971232 0.000162 0.00981 
SVM (Quadratic SVM) 0.006721 0.991986 4.52E-05 0.005833 
SVM (Cubic SVM) 0.006596 0.992282 4.35E-05 0.005687 
SVM (Fine Gaussian 
SVM) 

0.007685 0.989522 5.91E-05 0.006984 

SVM (Medium Gaussian 
SVM) 

0.006258 0.99305 3.92E-05 0.005298 

SVM (Coarse Gaussian 
SVM) 

0.012359 0.972896 0.000153 0.009766 

Ensemble (Boosted Trees) 0.006015 0.99358 3.62E-05 0.004654 
Ensemble (Bagged Trees) 0.002455 0.998931 6.03E-06 0.001748 
Gaussian Process 
Regression (Squared 
Exponential GPR) 

0.000885 0.999861 7.84E-07 0.000672 

Gaussian Process 
Regression (Matern 5/2 
GPR) 

0.00084 0.999875 7.06E-07 0.000626 

Gaussian Process 
Regression (Exponential 
GPR) 

0.000951 0.999839 9.05E-07 0.000657 

Gaussian Process 
Regression (Rational 
Quadtraic GPR) 

0.000852 0.999871 7.26E-07 0.00063 

Neural Network (Narrow 
Neural Network) 

0.004359 0.996629 1.90E-05 0.003239 

Neural Network (Medium 
Neural Network) 

0.004816 0.995885 2.32E-05 0.00346 

Neural Network (Wide 
Neural Network) 

0.001763 0.999449 3.11E-06 0.001289 

Neural Network 
(Bilayered Neural 
Network0 

0.002671 0.998734 7.13E-06 0.001891 

Neural Network 
(Trilayered Neural 
Network) 

0.002702 0.998705 7.30E-06 0.00207 

Kernel (SVM Kernel) 0.006625 0.992212 4.39E-05 0.005329 
Kernel (Least Squares 
Regression Kernel) 

0.008492 0.987206 7.21E-05 0.006377 

 

 The impact of data cleaning becomes evident when 
comparing the performance of the models with and without 
it, as illustrated in Tables II and III. The "without data 
cleaning" table shows relatively higher RMSE values, 
indicating larger prediction errors, while the R-squared 
values are lower, suggesting a weaker model fit. However, 
the models demonstrate significantly improved performance 
in the "with data cleaning" table. The RMSE values 
decrease substantially, reflecting reduced prediction errors, 
and the R-squared values approach 1, indicating a closer fit 
to the data. These improvements highlight the effectiveness 
of preprocessing techniques in enhancing model accuracy 
and reliability. By addressing data inconsistencies, handling 

missing values, and applying feature scaling, preprocessing 
enables the models to better capture patterns and 
relationships in the data, resulting in more robust and 
precise predictions. 

 Based on the evaluation of various machine learning 
models with hyperparameter tuning, as presented in Table 
III, it is clear that Gaussian Process Regression outperforms 
the other models in terms of RMSE, MSE, MAE, and R-
squared values, with the lowest RMSE (0.000839996), MSE 
(7.06E-07), and MAE (0.000632566), and the highest R-
squared value (0.999874806). Although the remaining 
models show varying performances, the SVM model ranks 
second with an RMSE of 0.001788057, while the Neural 
Network model performs the poorest with the highest 
RMSE of 0.003977832. These results emphasize the 
importance of selecting an appropriate model for wind speed 
prediction, as the choice of model can significantly affect 
the accuracy of predictions and overall model performance. 

TABLE II.  SUMMARY OF OPTIMIZED VALUES WITHOUT PRE-
PROCESSING 

Model 
10 cross-fold validation, 80:20 train-test ratio 

RMSE Rsquared MSE MAE 

Tree 0.88922 0.160376 0.790713 0.703298 
Support Vector 
Machine 0.883424 0.171287 0.780437 0.678056 
Gaussian Process 
Regression 0.804116 0.3134 0.646603 0.629434 
Ensemble 0.81863 0.288391 0.670154 0.646889 
Neural Network 0.971915 -0.00305 0.944618 0.724696 

TABLE III.  SUMMARY OF OPTIMIZED VALUES WITH PRE-PROCESSING 

Model 

10 cross-fold validation, 80:20 train-test 

ratio 

RMSE Rsquared MSE MAE 

Tree 0.001847 0.999395 3.41E-06 0.001245 
Support Vector 
Machine 0.001788 0.999433 3.20E-06 0.001227 
Gaussian Process 
Regression 0.00084 0.999875 7.06E-07 0.000633 
Ensemble 0.003473 0.99786 1.21E-05 0.002244 
Neural Network 0.003978 0.997192 1.58E-05 0.002992 

 

 Table IV lists the pre-processed optimum 
hyperparameter values for the Gaussian Process Regression 
model that gave it the best performance. The model's 
predictions were more accurate to the hyperparameter 
adjustment. 

TABLE IV.  HYPERPARAMETER VALUES 

Hyperparameter Value 

Sigma 0.0080 
Basis function Constant 
Kernel function Isotropic Matern 5/2 
Kernel Scale 0.0034 
Standardize data false 

 

 The predicted versus actual plot for GPR is likely to 
show a tight cluster of points around the diagonal line, 
indicating that the predicted values are very close to the 
actual values. On the other hand, the plot for the Neural 
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Network model is likely to have a more scattered 
distribution of points, indicating that the predicted values 
are farther from the actual values. The remaining models, 
including Tree, SVM, and Ensemble, are likely to have 
varying degrees of scatter in their predicted versus actual 
plots, reflecting their respective levels of accuracy. The plot 
is an effective visual tool for evaluating the effectiveness of 
regression models and gaining an understanding of the 
nature of the relationship between the predictor and 
response variables. 

 
Fig. 1. Predicted versus Actual Plots 

V. CONCLUSION 

 This study focused on predicting wind speed using a 
dataset spanning from 2000 to 2022, comprising nine 
features and daily observations. The data underwent quality-
focused pre-processing, and machine learning models were 
trained and evaluated with hyperparameter tuning for 
optimal performance. Through a comparison of different 
metrics, Gaussian Process Regression (GPR) emerged as the 
top-performing model, demonstrating the lowest RMSE and 
highest R-squared value. The study emphasizes the 
significance of choosing a suitable machine learning model 
and optimizing its hyperparameters to improve wind speed 
forecast accuracy. It also emphasizes the significance of 
thorough data pre-processing to ensure the reliability and 
quality of the dataset. The superiority of GPR in wind speed 
prediction provides theoretical advantages, such as 
capturing complex relationships and non-linearities in wind 
data, leading to more accurate forecasts. From a practical 
perspective, GPR's superior performance offers benefits 
such as improved system safety, efficient dispatch, cost 
savings, and enhanced operational planning for wind farms 
and power utilities. Additionally, accurate wind speed 
prediction using GPR aids in load forecasting and optimal 
scheduling, contributing to a reliable and seamlessly 
integrated wind power system. 
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