
Vol.:(0123456789)

Education and Information Technologies
https://doi.org/10.1007/s10639-024-13039-6

Profiling the skill mastery of introductory programming
students: A cognitive diagnostic modeling approach

Manuel B. Garcia1,2,3

Received: 28 February 2024 / Accepted: 3 September 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
The global shortage of skilled programmers remains a persistent challenge. High drop-
out rates in introductory programming courses pose a significant obstacle to gradua-
tion. Previous studies highlighted learning difficulties in programming students, but
their specific weaknesses remained unclear. This gap exists due to the predominant
focus on the overall academic performance evaluation. To address this gap, this study
employed cognitive diagnostic modeling (CDM) to profile the skill mastery of pro-
gramming students. An empirical analysis was conducted to select the most appro-
priate model for the data, and the linear logistic model (LLM) was determined to be
the best fit. Final examination results from 308 information technology (IT) and 279
computer science (CS) students were analyzed using the LLM. Unfortunately, find-
ings revealed that programming students exhibited proficiency primarily in code trac-
ing and language proficiency but displayed deficits in theoretical understanding, logi-
cal reasoning, and algorithmic thinking. From a practical standpoint, this deficiency
in fundamental skills sheds light on the factors contributing to academic failures and
potentially eventual dropout in programming education. When comparing the student
population by academic program, CS students demonstrated superior mastery com-
pared to their IT counterparts, although both groups exhibited a lack of mastery in
code tracing. These deviations underscore the pressing need for tailored educational
strategies that address the unique strengths and weaknesses of each student group.
Overall, this study offers valuable insights into programming education literature and
contributes to the expanding application of CDM in educational research.

Keywords Cognitive diagnostic modeling · Programming education · Information
technology · Computer science · Educational assessment

 * Manuel B. Garcia
 mbgarcia@feutech.edu.ph; mbgarcia14@up.edu.ph

1 College of Education, University of the Philippines Diliman, Quezon City, Philippines
2 Educational Innovation and Technology Hub, FEU Institute of Technology, Manila, Philippines
3 College of Education, Korea University, Seoul, South Korea

http://orcid.org/0000-0003-2615-422X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-024-13039-6&domain=pdf

 Education and Information Technologies

1 Introduction

Computer programming is an essential skill in modern society. According to the Asian
Development Bank (2022), programming skills are becoming increasingly essential
in all job sectors worldwide. This trend is unsurprising, considering the ongoing digi-
talization and the growing complexity of technological solutions in various industries.
Many non-coding job positions also now demand proficiency in computer program-
ming. The International Labour Organization (2021) posited that coding skills today
are required not only of programmers but also of scientists, engineers, designers, and
artists. This demand underscores the necessity of integrating these skills into edu-
cational curricula. Governments across the globe have responded by adapting their
educational systems. This adaptation involves the systematic incorporation of pro-
gramming courses across different levels of education (Ou et al., 2023), in addition to
offering them within information technology (IT), computer science (CS), and other
computing programs. For instance, Macrides et al. (2022) noted a significant trend
in early childhood education towards teaching coding. Their systematic review high-
lighted the adoption of screen-based visual programming and robotics for this purpose.
This trend continues into middle school, where Lira et al. (2022) identified program-
ming camps as a significant supplemental educational tool. It also extends to higher
education, where Agbo et al. (2019) observed the increasing integration of compu-
tational thinking in teaching problem-solving skills and programming education. By
incorporating these skills into the curricula, countries are preparing future generations
for the challenges and opportunities of an increasingly digital world.

Despite this global shift in education, the world continues to face a shortage of
skilled programmers. In a report covering four major countries (i.e., Canada, China,
Germany, and Singapore), the International Labour Organization (2020) has identified
substantial deficits in the number of software developers and programmers. Similar
widespread shortages have been observed by the European Labour Authority (2023)
in the EU27, Norway, and Switzerland. This global issue is multifaceted, but a criti-
cal component centers around the challenges within education systems. Programming
education often presents significant learning difficulties for students. Garcia (2021)
asserted that these challenges are influenced by individual differences (e.g., inherent
aptitudes and learning styles) as well as cognitive (e.g., problem-solving skills and
logical reasoning abilities) and non-cognitive (e.g., motivation and attitude) factors.
The effectiveness of programming education is also highly dependent on the quality
of teaching and curriculum design. However, Ou et al. (2023) observed that the cur-
rent quality of programming education is lacking, and there is a need for enhanced
curriculum development in schools. This situation underscores the importance of
rigorous assessment in programming education. Such assessments are vital in iden-
tifying areas where students face challenges. They also guide the refinement of teach-
ing methods and curriculum to ensure they are aligned with the evolving needs of
learners. However, most assessments are focused on measuring overall performance
rather than diagnosing specific cognitive strengths and weaknesses (Garcia & Revano,
2021). This general approach tends to overlook critical insights into individual learn-
ing attributes, which is crucial for addressing the unique challenges each student faces.

Education and Information Technologies

This gap in traditional assessment methods highlights the need for an approach
that can identify the cognitive abilities of programming students. While traditional
assessments measure overall performance, they often fail to diagnose specific cogni-
tive strengths and weaknesses. This limitation makes it difficult to provide targeted
support. To address this issue, Cognitive Diagnostic Modeling (CDM) emerges as a
fitting solution. CDM is a sophisticated analytical approach that focuses on under-
standing and diagnosing the specific cognitive skills and knowledge structures indi-
viduals possess. By providing detailed and multidimensional diagnostic feedback,
CDM can identify examinees’ strengths and weaknesses across a spectrum of attrib-
utes. This technique can be particularly beneficial in programming education, where
understanding the intricacies of a student’s cognitive abilities can lead to more
effective instructional strategies. Applying a CDM approach can inform curricu-
lum development and optimize learning outcomes by aligning instructional methods
with the diverse cognitive needs of students. Therefore, this study seeks to address
the following research questions (RQ):

 RQ1. Which cognitive diagnosis model most adequately fits the empirical data?
 RQ2. What are the attributes mastered by students at the grade and individual levels?
 RQ3. How do these mastery profiles vary between CS and IT students?

2 Background of the study

2.1 Cognitive diagnosis modeling

CDM is an advanced analytical approach designed to understand and diagnose the
specific cognitive skills and knowledge structures that individuals possess. Its foun-
dational roots date back to the development of the rule space method (Tatsuoka,
1983). Over the years, CDM has evolved to incorporate various models and tech-
niques aimed at providing detailed and multidimensional diagnostic feedback (Liu
et al., 2023). Unlike traditional psychometric frameworks that are more descriptive,
such as item response theory (IRT) and classical test theory (CTT), CDM offers a
diagnostic framework that classifies examinees’ strengths and weaknesses across a
spectrum of attributes (de la Torre & Minchen, 2014). In this context, an attribute is
described as essential knowledge and cognitive abilities crucial for solving specific
problems or tasks. For example, a CDM could indicate whether students learning
programming have mastered specific attributes essential to coding, such as under-
standing basic syntax, applying control structures such as loops and conditionals,
or efficiently debugging code (Garcia et al., 2022a, b) . This level of granularity
provides more detailed evidence than other psychometric models, making CDM
particularly useful for guiding teaching and learning decisions in the classroom
(Effatpanah et al., 2019; Paulsen & Valdivia, 2022). Given its capabilities as a psy-
chometric model, CDM is frequently used as the analytical framework in cognitive
diagnostic assessment as it offers a more comprehensive evaluation of students’
learning processes (Li et al., 2021).

 Education and Information Technologies

The application of CDM has shown significant success in various educational
contexts, including reading (Jang et al., 2015), listening (Meng et al., 2023), writing
(Effatpanah et al., 2019), mathematics (Chandía et al., 2023), and accounting (Helm
et al., 2022). These studies have demonstrated the effectiveness of CDM in providing
detailed insights into specific skill sets and cognitive abilities of students. However,
despite the empirical evidence demonstrating the benefits of CDM in other educa-
tional domains, it has not yet been adopted in programming education. A review of
the literature reveals a significant gap, as no studies have specifically employed CDM
as an assessment approach in programming education. The closest prior work involves
the assessment of computational thinking, which has a broader focus on problem-solv-
ing and algorithmic reasoning rather than programming-specific skills (Li & Traynor,
2022). Unfortunately, traditional assessments used in programming education (e.g.,
Qayyum et al., 2018; Schnieder & Williams, 2022), while useful in evaluating the gen-
eral understanding and competence of learners, often fail to diagnose specific cogni-
tive strengths and weaknesses. In contrast, CDM offers a unique opportunity to iden-
tify the nuances of students’ cognitive abilities. By diagnosing specific areas where
students may struggle or excel, CDM can provide educators with the insights needed
to tailor instruction more effectively. Given the limitations of traditional assessment
methods in programming, there is a compelling need to explore and integrate CDM
into this field to enhance both learning outcomes and instructional practices.

2.2 Foundational models in cognitive diagnosis

An important consideration in applying a CDM is selecting an appropriate model
(Wu et al., 2024). CDM encompasses various types of models, each with unique fea-
tures and applications. Saturated models, such as the G-DINA (generalized determin-
istic inputs, noisy "and" gate) model (de la Torre, 2011), are the most comprehensive,
as they allow for the estimation of all possible interactions among attributes. These
models are highly flexible and can capture complex relationships, but they require a
large amount of data and can be computationally intensive. Conversely, constrained
models simplify the structure by assuming that certain interactions are negligible,
thus reducing the number of parameters to be estimated. Examples of constrained
models include the DINA (deterministic inputs, noisy "and" gate) model (Junker
& Sijtsma, 2001), the DINO (deterministic input, noisy "or" gate) model (Templin
& Henson, 2006), additive CDM (ACDM; de la Torre, 2011), linear logistic model
(LLM; Maris, 1999), reduced reparameterized unified model (RRUM; Hartz, 2002),
and more. These models are easier to manage and interpret but may not capture all
the nuances of the data. When there are uncertain relationships among attributes,
Ma and de la Torre (2020b) noted that the higher-order GDINA model with Rasch,
1-Parameter Logistic (1PL), and 2-parameter Logistic (2PL) joint attribute distribu-
tions can be considered to select appropriate models for empirical studies.

In some cases, a mixed model approach is used as a supplement to standard CDM
analysis, where different models are applied to individual items within the same
assessment. This technique allows for a tailored analysis that can better fit the vary-
ing complexities of various questions in an instrument. For instance, simpler items

Education and Information Technologies

might be analyzed with reduced models, while more complex items might require
saturated models to fully capture the cognitive processes involved. In a practical
application, Ravand and Robitzsch (2018) applied this method in a reading compre-
hension context and found that a mixed model provided a better fit than the G-DINA
model. Given the abundance of viable models, de la Torre and Lee (2013) argued
that objectively choosing the most appropriate model is crucial rather than relying
on personal preference or a predetermined model. As a guiding approach, the parsi-
mony principle suggests selecting the simplest model when faced with multiple sta-
tistically equivalent models. However, model selection should also be based on how
well the model assumptions correspond to the theoretical basis used to construct a
given test (Li et al., 2015). de la Torre and Lee (2013) noted that the Wald Test, a
statistical test for parameter significance, can be used to compare models under the
G-DINA framework. Using this test allows the selection of the model that best fits
the specific context of the assessment. The choice of model impacts the accuracy
and utility of the diagnostic information obtained, making it essential to consider
the characteristics of the items and the attributes being measured (Effatpanah et al.,
2019; Helm et al., 2022). This careful selection ensures that the CDM approach
is effectively tailored to provide fine-grained diagnostic information and the most
meaningful insights into students’ cognitive abilities and learning needs.

3 Methods

3.1 Study setting and participants

The research was conducted at one of the leading institutes of technology in the Phil-
ippines. This university hosts a College of Computer Studies and Multimedia Arts
(CCSMA), which offers IT and CS undergraduate programs. A fundamental compo-
nent shared between these programs is a series of introductory and advanced computer
programming courses. One of the programming courses that plays a significant role
in the curriculum of both programs is Computer Programming 1, which comprises
lecture (CCS0003) and laboratory (CCS0003L) components. The primary objective
of this introductory programming course is to teach first-year computing students
the foundational skills in computational logic and design. The course covers tradi-
tional problem-solving techniques (e.g., flowcharting and pseudo-coding) and basic
programming concepts covering input/output operations, conditional and repetitive
control structures, and arrays. Garcia (2021) utilized the same course in conducting
experimental research on evaluating cooperative learning pedagogy in computer pro-
gramming. The selection of this course for the study is strategic, as it represents a
shared educational experience for IT and CS students. The course maintains uniform-
ity in its syllabus, teaching materials, and online modules, ensuring instruction con-
sistency across different faculty members and between the two programs. It also guar-
antees that all computing students are assessed under similar conditions, making the
evaluation of their skills and knowledge fair and unbiased. By maintaining uniformity
in course content and delivery, the research design effectively controls for extraneous
variables that might otherwise influence the outcome of the study (Garcia, 2023).

 Education and Information Technologies

3.2 Research instrument and data collection

This study utilized a comprehensive 100-item multiple-choice final examination
from the CCS0003 course. Administered during the first trimester of the academic
year 2023–2024, all IT and CS students enrolled in the course took this departmen-
tal examination for an hour. The instrument development was spearheaded by the
faculty-in-charge, with subsequent validation by a team of co-faculty members who
also teach the course. This collaborative approach in the instrument’s development
and validation ensured its academic rigor and alignment with the course’s educa-
tional objectives. It is important to note that, although arguably better approaches to
assess students exist (e.g., practical coding assessments), the number of items and
the multiple-choice format are departmental requirements. Despite the multiple-
choice format, several questions presented students with scenarios involving machine
problems requiring them to interpret and analyze provided code snippets. Success-
fully responding to these questions necessitates a comprehensive understanding of
the underlying algorithms. Additionally, this instrument was created simply as a final
course assessment and not specifically for CDM analysis. Lee et al. (2012) argued
that very few assessments are designed based on a cognitive diagnosis framework.
More commonly, CDM is applied retrospectively to assessments initially developed
with a unidimensional item response theory framework (i.e., retrofitting).

Nonetheless, the primary reason for selecting the final examination is the avail-
ability of detailed data (i.e., student responses on an item-by-item basis and the cor-
rectness of these responses). The dataset was readily accessible through ZipGrade
– a mobile optical scanner application for grading multiple-choice assessments. The
administrative office of the CCSMA was formally requested to provide a copy of the
examination and the results. In response to the request, and with consideration for ethi-
cal research practices, they provided randomly selected data from various IT (n = 308)
and CS (n = 269) classes. Upon receipt of the data, the first step was anonymizing it to
ensure student confidentiality. This anonymization process involved removing all per-
sonally identifiable information, such as names, identification numbers, and any other
markers traceable to individual students. This step was crucial for protecting student
privacy and upholding the integrity of our research. More importantly, this approach
strictly complied with data protection regulations and institutional ethical guidelines.

3.3 Q‑matrix

Upon obtaining a copy of the examination, domain expertise was utilized, enriched
by insights from relevant literature (e.g., Xie et al., 2019), to identify the essential
attributes that computer programming students must possess. At this point, the pri-
mary goal was to compile a comprehensive list of these attributes. Then, the exami-
nation was reviewed item-by-item to check for missing attributes or to confirm that
all identified attributes were covered. Indeed, specific attributes (e.g., debugging and
code documentation) were not included in the study due to the absence of corre-
sponding questions in the examination. The initial list of attributes was then presented
to the faculty-in-charge who developed the examination. Following a consultation, a

Education and Information Technologies

consensus was reached that the attributes measured by this examination include theo-
retical understanding, language proficiency, logical reasoning, algorithmic thinking,
and code tracing (see Table 1). Subsequently, a Q-Matrix was developed to illustrate
the relationship between examination items and the identified attributes. Mapping the
test items onto an item-by-skill table is a critical first step in CDM (Tatsuoka, 1983).
The Q-Matrix underwent validation by the faculty team responsible for the creation
and validation of the CCS0003 examination. In cases of disagreement, conflicting
viewpoints were discussed and resolved through collaborative decision-making to
ensure a unified and accurate representation in the matrix. Several revisions were
made based on their feedback, and the revised version served as our initial Q-Matrix.

3.4 Data analysis

Following the development of the initial Q-matrix, data analysis was conducted
using the R programming language, employing the GDINA framework (Ma & de
la Torre, 2020b) as well as the tidyr, ggplot2, and fmsb packages. The data anal-
ysis was initiated with an empirical validation of the item-by-skill table. Ma and
de la Torre (2020a) have observed that Q-matrices developed by domain experts
often tend to be subjective, which is why it is critical to validate them empirically
to avoid erroneous attribute estimation. The results provided by the G-DINA model
were consulted using the Proportion of Variance Accounted For (PVAF) with a cut-
off greater than 0.95 (de la Torre & Chiu, 2016). Additionally, the mesa plots (refer
to Fig. 1) of items flagged for revision were manually checked for further analysis.
Revisions were made only when they were logically consistent with the item and the
skills required for its correct response. This validation process led to the finaliza-
tion of the Q-Matrix, with the results indicating that 86 out of 100 q-vectors were
retained (e.g., Item 48; Fig. 1a). Regarding the 14 items with suggested q-vector
modifications: six items had one suggested change each (e.g., Item 25: from 10110
to 11110; Fig. 1b), six items had two suggested changes each (e.g., Item 57: from
01001 to 01111; Fig. 1c), and one item had three suggested changes (e.g., Item 54:
from 10000 to 10111; Fig. 1d. The final and validated Q-matrix can be found in
Appendix A..

Afterward, the analysis progressed by fitting the G-DINA model while imposing
the monotonicity constraints on the dataset. This saturated model provided a baseline
for our analysis. Subsequently, various models were explored, including the DINA
model, the DINO model, ACDM, LLM, and RRUM. Given the diversity of cognitive
processes involved, it may be more beneficial to avoid forcing a single model onto
the entire dataset. Recognizing the complexity of cognitive processes and preventing
the imposition of a single model on the entire test, an item-level model fit analysis
was conducted. This approach allowed us to consider how each model applied to indi-
vidual test items rather than the entire test. To select the most appropriate model at
the item level, this study followed the process outlined by Ma et al. (2016). First, the
Wald statistic for all models for every item was calculated. de la Torre and Lee (2013)
recommended the use of the Wald test as an objective means of determining the most
appropriate models. In this approach, the null hypothesis posits that the reduced model

 Education and Information Technologies

Ta
bl

e
1

 A
ttr

ib
ut

es
 re

qu
ire

d
fo

r t
he

 C
C

S0
00

3
fin

al
 e

xa
m

in
at

io
n

A
ttr

ib
ut

es
D

efi
ni

tio
n

Re
fe

re
nc

es

Th
eo

re
tic

al
 U

nd
er

st
an

di
ng

D
ee

p
un

de
rs

ta
nd

in
g

of
 th

e
pr

in
ci

pl
es

 a
nd

 th
eo

rie
s t

ha
t f

or
m

 th
e

fo
un

da
tio

n
of

 p
ro

gr
am

m
in

g
(G

ar
ci

a
&

 R
ev

an
o,

 2
02

1;
 H

ot
a

et
 a

l.,
 2

02
3;

 T
hu

né
 &

 E
ck

er
da

l,
20

19
)

La
ng

ua
ge

 P
ro

fic
ie

nc
y

M
as

te
ry

 in
 u

si
ng

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s e

ffe
ct

iv
el

y
to

 so
lv

e
pr

ob
-

le
m

s a
nd

 c
re

at
e

ap
pl

ic
at

io
ns

(G
ar

ci
a

et
 a

l.,
 2

02
2a

, b
; G

uo
, 2

01
8;

 X
ie

 e
t a

l.,
 2

01
9;

 Z
ha

ng
 e

t a
l.,

20

23
)

Lo
gi

ca
l R

ea
so

ni
ng

A
bi

lit
y

to
 a

pp
ly

 c
oh

er
en

t a
nd

 ra
tio

na
l t

hi
nk

in
g

to
 so

lv
e

pr
ob

le
m

s a
nd

m

ak
e

de
ci

si
on

s i
n

pr
og

ra
m

m
in

g
(B

ar
lo

w
-J

on
es

 &
 v

an
 d

er
 W

es
th

ui
ze

n,
 2

01
7;

 D
ju

rd
je

vi
c-

Pa
hl

 e
t a

l.,

20
17

)
A

lg
or

ith
m

ic
 T

hi
nk

in
g

Sk
ill

 in
 d

es
ig

ni
ng

, u
nd

er
st

an
di

ng
, a

nd
 im

pl
em

en
tin

g
in

str
uc

tio
ns

 to

so
lv

e
sp

ec
ifi

c
pr

ob
le

m
s e

ffi
ci

en
tly

(A
ng

el
i,

20
22

; K
is

s &
 A

rk
i,

20
17

; L
am

ag
na

, 2
01

5;
 T

su
ka

m
ot

o
et

 a
l.,

20

17
)

C
od

e
Tr

ac
in

g
C

om
pe

te
nc

e
in

 fo
llo

w
in

g
a

pr
og

ra
m

’s
 e

xe
cu

tio
n

flo
w

 a
nd

 c
om

pr
e-

he
nd

in
g

th
e

be
ha

vi
or

 o
f t

he
 c

od
e

(K
um

ar
, 2

01
5;

 R
us

se
ll,

 2
02

2;
 S

ta
nk

ov
 e

t a
l.,

 2
02

3;
 Z

ha
ng

 e
t a

l.,
 2

02
3)

Education and Information Technologies

fits the item as well as the saturated model. If the null hypothesis is rejected (p < 0.05),
the reduced model is dismissed. If more than one reduced model is retained and DINA
or DINO is among them, the one with the most significant p-value is selected. The
outcome of this analysis was a mixed model (subsequently referred to as MIXED),
which combined different models at an item level. In addition to these models, we
incorporated higher-order G-DINA models such as Rasch, 1PL, and 2PL into our
analysis. Several studies have demonstrated the potential of using higher-order models
in examining the skill profiles of students (e.g., Zhang et al., 2022).

All these models were included in the relative fit analysis, where the perfor-
mance of saturated, reduced, mixed, and higher-order models was compared using
the anova() function in the G-DINA framework. This comparative analysis was piv-
otal in selecting the most appropriate model. Models that were not rejected during
this analysis were further examined, and the one with the lowest Akaike Information
Criterion (AIC; Akaike, 1974) and Bayesian Information Criterion (BIC; Schwarz,
1978) was selected as the most suitable model. Both AIC and BIC are relative fit

(setubirttAdeniateR)a(b) One Attribute Revised

desiveRsetubirttAeerhT)d(desiveRsetubirttAowT)c(

Fig. 1 Mesa plots of sample items showcasing varying levels of attribute modifications, (a) Retained
Attributes, (b) One Attribute Revised, (c) Two Attributes Revised (d) Three Attributes Revised

 Education and Information Technologies

indices used for selecting between non-nested models, with lower values indicating
a better fit. These indices provide a balance between model complexity and good-
ness of fit, helping avoid overfitting while ensuring accuracy (Chen et al., 2013).
After determining the best model, the focus shifted to evaluating the prevalence
of various cognitive attributes among programming students. This step was essen-
tial for understanding the commonalities and variations in cognitive skills within
the student population. Finally, a multi-group comparison was conducted to further
assess the cognitive attributes of CS and IT students. This analysis aimed to identify
significant differences in abilities and skills between the two student cohorts, which
can provide valuable insights into the specific educational needs of each discipline.

4 Results

4.1 RQ1: Which cognitive diagnosis model most adequately fits the collected
data?

Table 2 presents the results of the item-level model fit analysis. The model selection
process at the item level was guided by statistical criteria to ensure that only the most
fitting models were retained for analysis. For instance, both DINA and DINO were
retained for Item 13, and DINO was chosen because it had a higher p-value than DINA.
In cases where DINA and DINO have the same value (e.g., item 67), either of the two
can be selected. Conversely, if neither DINA nor DINO are among the retained models,
the reduced model (be it ACDM, LLM, or RRUM) with the most significant p-value
is selected. For example, both DINA and DINO were dismissed for Item 48, and LLM
was chosen as it had the highest p-value. It should be noted that when several reduced
models have p-values greater than 0.05, DINA or DINO are preferred over other mod-
els due to their statistical simplicity (Rupp & Templin, 2008). Finally, items measuring
a single attribute that was not included in the table used G-DINA by default.

An absolute fit test was then conducted to compare the fit of the models to the
data. The modelfit() function was used to measure the M2 statistic, the root mean
square error of approximation (RMSEA2), and the standardized root mean square
residual (SRMSR). Additionally, the itemfit() function was employed to assess the
maximum z-scores for both transformed correlation and log odds ratio. In these indi-
ces, lower values are preferable as they signify a reduced discrepancy between the
model predictions and the actual observed data. In the preliminary analysis (refer to
Appendix B. for the results), it is notable that all RMSEA2 values were above 0.045,
which indicates that all models displayed a poor fit. Although there is no univer-
sally accepted cutoff (Davier and Lee 2019), several studies have suggested that an
RMSEA below 0.045 denotes a good model fit (e.g., Delafontaine et al., 2022; Shi
et al., 2021). Consequently, 19 items that exhibited inadequate performance in terms
of the item discrimination index (IDI) and the G-DINA discrimination index (GDI)
were removed. This elimination focused on items that made a minimal contribu-
tion to distinguishing between latent classes or those with low IDI and GDI scores.
The removal of these poorly performing items was critical to enhancing the overall

Education and Information Technologies

Table 2 p-values of each reduced model obtained using the wald test

Items DINA DINO ACDM LLM RRUM Selected Model

Item 13 0.9747 0.9791 0.9882 0.9691 0.9952 DINO
Item 19 1.0000 0.9956 0.9732 0.9578 0.9772 DINA
Item 20 0.9971 0.9988 0.9545 0.9796 0.9590 DINO
Item 22 0.9909 0.9956 0.9907 0.984 0.9803 DINO
Item 23 0.9977 0.9964 0.9771 0.9964 0.9747 DINA
Item 32 0.9997 1.0000 0.9990 1.0000 0.9998 DINO
Item 40 1.0000 0.9995 1.0000 1.0000 1.0000 DINA
Item 41 0.9892 0.9579 0.9954 0.9936 0.9972 DINA
Item 48 0.0000 0.0000 0.9997 1.0000 0.0000 LLM
Item 51 0.0003 0.0000 0.0000 1.0000 1.0000 LLM
Item 52 0.0283 0.4828 1.0000 1.0000 0.0220 DINO
Item 53 0.0000 0.8404 1.0000 1.0000 0.9960 DINO
Item 57 0.0000 0.9531 0.9864 0.999 0.0000 DINO
Item 58 0.0000 0.0000 0.9981 0.9998 0.4145 LLM
Item 59 0.0000 0.9337 0.9992 1.0000 0.0057 DINO
Item 61 0.0000 0.0000 1.0000 1.0000 0.0351 LLM
Item 62 0.0000 0.0000 0.9996 1.0000 0.5883 LLM
Item 63 0.1634 0.1247 0.001 1.0000 1.0000 DINA
Item 64 0.0004 0.0004 0.0000 1.0000 1.0000 LLM
Item 65 0.0000 0.0000 0.0000 1.0000 0.0000 LLM
Item 67 0.8562 0.8562 0.049 1.0000 1.0000 DINO
Item 68 0.0000 0.9988 0.4478 1.0000 0.0000 DINO
Item 69 1.0000 1.0000 1.0000 1.0000 1.0000 DINO
Item 72 0.0266 0.0000 1.0000 1.0000 1.0000 LLM
Item 73 1.0000 0.6735 0.9243 0.0000 0.0000 DINA
Item 75 0.9983 0.9836 0.0000 1.0000 1.0000 DINA
Item 77 0.9356 0.0000 0.0000 0.0001 0.0000 DINA
Item 78 0.0015 0.0000 1.0000 1.0000 1.0000 LLM
Item 79 0.0000 0.0000 0.9946 0.9997 0.8927 LLM
Item 80 0.9986 1.0000 0.9998 1.0000 1.0000 DINO
Item 81 1.0000 1.0000 0.9998 0.0000 0.0000 DINO
Item 83 0.2527 0.0948 1.0000 1.0000 1.0000 DINA
Item 84 0.9985 0.9980 0.2712 1.0000 1.0000 DINA
Item 85 0.9612 0.9611 1.0000 1.0000 1.0000 DINA
Item 86 1.0000 1.0000 0.9705 1.0000 1.0000 DINA
Item 87 0.9993 0.9991 0.9878 0.9914 0.9867 DINO
Item 89 0.9903 0.9906 0.9735 0.9741 0.9697 DINO
Item 92 0.9691 0.9966 1.0000 1.0000 0.9925 DINO
Item 93 0.9253 0.8156 0.9866 1.0000 1.0000 DINA
Item 96 0.9987 0.9965 0.1924 1.0000 0.0051 DINA
Item 99 1.0000 1.0000 0.9857 1.0000 0.7902 DINA

 Education and Information Technologies

accuracy of the model. Following this refinement, Table 3 presents improved results,
evidenced by lower values across various indices.

To answer RQ1, a relative fit test was performed to objectively compare and
find the best fitting model among the saturated (G-DINA), reduced (DINA, DINO,
ACDM, LLM, & RRUM), higher-order (Rasch, 1PL, and 2PL), and a combination
of different models (MIXED). Using the anova() function in the G-DINA frame-
work, the results of the information criteria and likelihood ratio test are shown in
Table 4. Based on these results, the DINA, DINO, and MIXED models were rejected
(p < 0.001), and only the RRUM, LLM, and ACDM fitted the data well (p = 1).
Among these potential models, the LLM demonstrated the best fit (AIC = 49,819.33;
BIC = 51,144.11). Both AIC and BIC serve as a measure for comparing model fit,
with lower values signifying a more favorable model fit (Shi et al., 2021). The con-
sistency between the relative and absolute fit tests is evident, as the LLM not only
emerges as the best model in the relative fit test but also excels in the absolute fit test
by exhibiting the lowest RMSEA2 value (0.0447). Most importantly, this is the only
model with a good fit (RMSEA2 < 0.045) to the data.

Consequently, the LLM was selected and used to compute the classification accu-
racy of the test, as well as to estimate the discrimination index and attribute prevalence.
This approach supports the practice of empirically simplifying the G-DINA model, as
reduced models can provide better classification results when used appropriately (Ma
et al., 2016). The analysis revealed that using LLM in analyzing the dataset achieved
an overall attribute profile classification accuracy of 0.8484, which indicates that it
could reliably classify 84.84% of students in terms of their skill mastery of computer
programming. At the attribute level, the selected model can correctly identify theo-
retical understanding at 97.41%, language proficiency at 99.50%, logical reasoning at
96.69%, algorithmic thinking at 90.01%, and code tracing at 94.48%. These results
indicate high classification accuracy at the profile and attribute levels, demonstrating
the robustness of the selected model in assessing diverse skill sets.

Table 3 Absolute model fit indices

df = Degrees of Freedom; RMSEA = Root Mean Square Error of Approximation; CI = Confidence Inter-
val; SRMSR = Standardized Root Mean Square Residual; Max.z(r) = maximum z score for transformed
correlation; Max.z(l) = maximum z score for log odds ratio

Model df M2 RMSEA2 (CI) SRMSR Max.z(r) Max.z(l)

G-DINA 2486 5568.106 0.0464 (0.0447—0.0480) 0.0837 11.8611 12.3432
DINA 3128 12,098.120 0.0705 (0.0692—0.0718) 0.0813 13.6626 13.9054
DINO 3128 12,091.610 0.0705 (0.0691—0.0718) 0.0823 13.5415 13.7789
RRUM 3017 6551.055 0.0451 (0.0436—0.0465) 0.0831 10.1394 10.1633
LLM 3017 6489.424 0.0447 (0.0432—0.0462) 0.0822 10.1137 10.1389
ACDM 3017 6567.468 0.0452 (0.0437—0.0466) 0.0883 10.1528 10.1736
Rasch 2512 5716.850 0.0470 (0.0454—0.0486) 0.0842 10.1097 10.5211
1PL 2511 5665.227 0.0467 (0.0450—0.0483) 0.0837 10.7157 11.1573
2PL 2507 5546.834 0.0458 (0.0442—0.0475) 0.0842 11.0002 11.4603
MIXED 2821 7677.886 0.0546 (0.0532—0.0561) 0.0907 10.0860 10.1093

Education and Information Technologies

Ta
bl

e
4

 R
el

at
iv

e
m

od
el

 fi
t i

nd
ic

es

In
 L

ik
el

ih
oo

d
R

at
io

 te
sts

, m
od

el
s w

er
e

te
ste

d
ag

ai
ns

t G
D

IN
A

. #
pa

r =
 N

um
be

r o
f P

ar
am

et
er

s;
 lo

gl
ik

e =
 L

og
-L

ik
el

ih
oo

d;
 A

IC
 =

 A
ka

ik
e

In
fo

rm
at

io
n

C
rit

er
io

n;
 B

IC
 =

 B
ay

es
-

ia
n

In
fo

rm
at

io
n

C
rit

er
io

n;
 C

IC
 =

 C
on

si
ste

nt
 A

IC
; S

A
B

IC
 =

 S
am

pl
e-

Si
ze

 A
dj

us
te

d
B

IC
; c

hi
sq

 =
 C

hi
-S

qu
ar

e
St

at
ist

ic
; d

f =
 D

eg
re

es
 o

f F
re

ed
om

M
od

el
#p

ar
lo

gl
ik

D
ev

ia
nc

e
A

IC
B

IC
CA

IC
SA

B
IC

ch
is

q
df

p-
va

lu
e

G
-D

IN
A

83
5

-2
4,

52
5.

45
49

,0
50

.9
0

50
,7

20
.9

0
54

,3
59

.7
0

55
,1

94
.7

0
51

,7
08

.9
2

D
IN

A
19

3
-2

5,
40

8.
89

50
,8

17
.7

9
51

,2
03

.7
9

52
,0

44
.8

5
52

,2
37

.8
5

51
,4

32
.1

5
17

66
.8

8
64

2
 <

 0.
00

1
D

IN
O

19
3

-2
5,

37
6.

54
50

,7
53

.0
8

51
,1

39
.0

8
51

,9
80

.1
5

52
,1

73
.1

5
51

,3
67

.4
5

17
02

.1
8

64
2

 <
 0.

00
1

R
RU

M
30

4
-2

4,
62

9.
31

49
,2

58
.6

2
49

,8
66

.6
2

51
,1

91
.4

0
51

,4
95

.4
0

50
,2

26
.3

3
20

7.
72

53
1

1
LL

M
30

4
-2

4,
60

5.
66

49
,2

11
.3

3
49

,8
19

.3
3

51
,1

44
.1

1
51

,4
48

.1
1

50
,1

79
.0

3
16

0.
42

53
1

1
A

C
D

M
30

4
-2

4,
70

8.
64

49
,4

17
.2

8
50

,0
25

.2
8

51
,3

50
.0

7
51

,6
54

.0
7

50
,3

84
.9

9
36

6.
38

53
1

1
R

A
SC

H
80

9
-2

4,
34

9.
04

48
,6

98
.0

9
50

,3
16

.0
9

53
,8

41
.5

8
54

,6
50

.5
8

51
,2

73
.3

4
-3

52
.8

1
1P

L
81

0
-2

4,
35

5.
82

48
,7

11
.6

4
50

,3
31

.6
4

53
,8

61
.5

0
54

,6
71

.5
0

51
,2

90
.0

8
-3

39
.2

6
2P

L
81

4
-2

4,
30

7.
13

48
,6

14
.2

6
50

,2
42

.2
6

53
,7

89
.5

5
54

,6
03

.5
5

51
,2

05
.4

3
-4

36
.6

4
M

IX
ED

26
4

-3
1,

23
5.

97
62

,4
71

.9
4

62
,9

99
.9

4
64

,1
50

.4
1

64
,4

14
.4

1
63

,3
12

.3
2

13
,4

21
.0

4
57

1
 <

 0.
00

1

 Education and Information Technologies

4.2 RQ2: What are the attributes mastered by students at the grade
and individual levels?

In addressing RQ2, the attribute prevalence was analyzed to determine the proportion
of students who have mastered or not mastered each attribute in computer program-
ming (see Fig. 2). According to the grade-level analysis, students mastered only two of
the five evaluated attributes, indicating that the majority did not achieve mastery. Spe-
cifically, the data showed that a higher percentage of students demonstrated mastery
in code tracing (60.02%) and language proficiency (81.76%). In contrast, there was a
smaller proportion of students who achieved mastery in algorithmic thinking (48.82%),
logical reasoning (44.44%), and theoretical understanding (44.76%). These contrasting
results in attribute prevalence at the grade level highlight the need for a more balanced
and focused approach in programming education. It is essential to ensure that all criti-
cal skills are adequately addressed and developed.

To understand the patterns of attribute mastery among programming students,
latent classes and their corresponding posterior probability percentages were analyzed.
With five attributes, there are up to 32 unique attribute profiles (APs). As shown in
Table 5 and Fig. 3, three latent classes dominated the programming student popula-
tion. These include students who mastered only language proficiency (AP 3; 16.49%;
Fig. 3b), those who mastered all attributes (AP 32; 15.66%; Fig. 3c), and those students
who mastered all attributes except logical reasoning (AP 29; 10.83%; Fig. 3a). These
mastery patterns are followed by 18 more latent classes that had a non-zero posterior
probability. There were also 11 latent classes where the posterior probability was 0%,
indicating no students fell into these categories. Overall, this individual-level analysis
conforms with the results of the grade-level analysis.

Fig. 2 Attribute prevalence of the programming student population

Education and Information Technologies

4.3 RQ3: How do these mastery profiles vary between cs and it students?

In addressing RQ3, the proportion of IT and CS students who have or have not mas-
tered each programming attribute was compared by activating the multi-group analy-
sis in the GDINA library. Both relative and absolute fit tests demonstrate that the
LLM is still the best model for this analysis. The grade-level analysis revealed that CS

Table 5 Latent class and posterior probability percentage (whole population)

1 = attribute present; 0 = attribute absent

Attribute
Profile

Attributes Posterior
Probabil-
ityTheoretical

Understanding
Language
Proficiency

Logical
Reasoning

Algorithmic
Thinking

Code Tracing

1 0 0 0 0 0 0.58
2 1 0 0 0 0 0.00
3 0 1 0 0 0 16.49
4 0 0 1 0 0 0.00
5 0 0 0 1 0 4.71
6 0 0 0 0 1 4.56
7 1 1 0 0 0 0.03
8 1 0 1 0 0 0.00
9 1 0 0 1 0 0.00
10 1 0 0 0 1 0.00
11 0 1 1 0 0 6.36
12 0 1 0 1 0 6.75
13 0 1 0 0 1 7.18
14 0 0 1 1 0 0.56
15 0 0 1 0 1 0.97
16 0 0 0 1 1 0.25
17 1 1 1 0 0 0.00
18 1 1 0 1 0 4.17
19 1 1 0 0 1 0.01
20 1 0 1 1 0 0.00
21 1 0 1 0 1 1.69
22 1 0 0 1 1 0.00
23 0 1 1 1 0 0.00
24 0 1 1 0 1 6.21
25 0 1 0 1 1 0.00
26 0 0 1 1 1 0.00
27 1 1 1 1 0 0.33
28 1 1 1 0 1 7.11
29 1 1 0 1 1 10.83
30 1 0 1 1 1 4.93
31 0 1 1 1 1 0.63
32 1 1 1 1 1 15.66

 Education and Information Technologies

students achieved higher mastery levels than IT students in four out of five attributes.
As shown in Fig. 4, the data indicate that CS students demonstrated better mastery
in algorithmic thinking (64.05%), language proficiency (98.70%), logical reasoning
(76.11%), and theoretical understanding (61.33%). Only in code tracing (31.57%) did
the IT students exhibit better mastery. Nonetheless, the mastery levels of both groups
did not reach or exceed the 50% threshold in this attribute. This finding suggests that
code tracing is the area where both groups show the most significant weakness.

Building on the findings from the multi-group analysis, the individual-level anal-
ysis further explores the differences in the patterns of attribute mastery between
CS and IT students. It is not surprising to observe distinct mastery profiles within
these groups (see Table 6), given the varied learning outcomes previously noted. For
example, the CS student population is dominated by students who have mastered all
attributes except algorithmic thinking (AP 28; 28.15%). Conversely, the IT student

(a) Mastery Pattern 01000 (b) Mastery Pattern 11111 (c) Mastery Pattern 11011

Fig. 3 Individual skill profiles based on dominant mastery pattern, (a) Mastery Pattern 01000, (b) Mas-
tery Pattern 11,111, (c) Mastery Pattern 11,011

Fig. 4 Attribute prevalence between IT and CS programming students

Education and Information Technologies

population is dominated by students who have mastered only language proficiency
(AP 3; 34.06%). Although the CS group exhibits greater mastery in this attribute, it
still represents the attribute most frequently mastered by the IT group. This individ-
ual-level analysis aligns with the overarching theme from our broader analysis: dis-
tinct educational trajectories are evident within the IT and CS student populations.

Table 6 Latent class and posterior probability percentage (IT vs CS)

1 = attribute present; 0 = attribute absent; IT = Information Technology; CS = Computer Science

Attribute
Profile

Attributes Posterior Prob-
ability

Theoretical
Understanding

Language
Proficiency

Logical
Reasoning

Algorithmic
Thinking

Code Tracing IT CS

1 0 0 0 0 0 0.00 0.00
2 1 0 0 0 0 0.00 0.00
3 0 1 0 0 0 34.06 3.50
4 0 0 1 0 0 0.00 1.11
5 0 0 0 1 0 9.79 0.33
6 0 0 0 0 1 0.48 0.00
7 1 1 0 0 0 0.00 1.14
8 1 0 1 0 0 0.00 0.00
9 1 0 0 1 0 0.00 0.00
10 1 0 0 0 1 0.00 0.00
11 0 1 1 0 0 0.00 18.15
12 0 1 0 1 0 0.00 0.00
13 0 1 0 0 1 11.63 4.38
14 0 0 1 1 0 1.62 0.19
15 0 0 1 0 1 0.00 0.00
16 0 0 0 1 1 3.13 0.00
17 1 1 1 0 0 0.00 0.00
18 1 1 0 1 0 0.77 0.00
19 1 1 0 0 1 9.02 7.43
20 1 0 1 1 0 0.00 0.00
21 1 0 1 0 1 0.00 0.00
22 1 0 0 1 1 0.00 0.00
23 0 1 1 1 0 0.00 0.80
24 0 1 1 0 1 0.48 9.95
25 0 1 0 1 1 0.00 0.00
26 0 0 1 1 1 7.26 0.00
27 1 1 1 1 0 0.00 0.69
28 1 1 1 0 1 0.23 28.15
29 1 1 0 1 1 9.22 6.71
30 1 0 1 1 1 11.82 0.00
31 0 1 1 1 1 0.26 0.42
32 1 1 1 1 1 0.20 17.04

 Education and Information Technologies

5 Discussion

High student dropout rates in programming courses are a significant issue, often
resulting in lower overall graduation rates. This barrier not only hinders the develop-
ment of a skilled workforce capable of meeting the evolving demands of various sec-
tors but also limits the ability of individuals to engage with and contribute to the digi-
tal economy. Prior works have established that programming students face various
learning difficulties (Garcia, 2021). However, the exact nature of their weaknesses
remains vague, posing a challenge in determining which specific programming-
related attributes students lack. This gap exists mainly because most studies on pro-
gramming education focus on evaluating overall academic performance. Recognizing
the importance of pinpointing specific skill mastery profiles, this study applied CDM
to assess the cognitive abilities of programming students. By identifying specific
areas where a student may struggle or excel in programming, this study offers empiri-
cal evidence that can assist educators in customizing their instructional approaches.
Moreover, it can inform the development of curricula to better cater to the varied
cognitive requirements of students in programming courses.

Model fit analyses were initially conducted to ensure the accuracy of the diag-
nostic conclusions derived from the data. The LLM demonstrated the best fit as
evidenced by both relative and absolute fit indices. This selection also supports the
empirical simplification of saturated models, as reduced models can provide better
classification rates than their more complex counterparts (Ma et al., 2016). Based
on the data analyses, the LLM exhibited high accuracy in both profile and attribute-
level classification. Using this model, the attribute prevalence was then analyzed
to determine the mastery levels of each programming attribute. Unfortunately, the
grade-level analysis revealed that programming students only mastered language
proficiency and code tracing. These two attributes indicate that students have a fun-
damental understanding of the syntax and semantics of programming languages, as
well as the ability to follow and predict the execution flow of programs. Mastery
in these areas is essential for basic programming tasks, but it does not cover the
full spectrum of skills required for more advanced problem-solving and program
development (Graafsma et al., 2023). The reliance on language proficiency and code
tracing skills alone may result in a limited ability to tackle complex programming
challenges, which require a deeper understanding of underlying principles and the
ability to apply logical and algorithmic thinking (Garcia et al., 2023). This limited
skill set suggests a significant gap in the educational approach that may need to be
addressed to ensure students develop a more comprehensive and well-rounded pro-
gramming skill set.

While they demonstrate an understanding of the programming language and can
follow program execution, students lack mastery in algorithmic thinking, logical rea-
soning, and theoretical understanding. These deficiencies are particularly concerning
because effective program development necessitates not just theoretical understand-
ing but also mastery of algorithmic thinking and logical reasoning (Thuné & Eck-
erdal, 2019). Without strong skills in these areas, students may struggle to design
efficient algorithms, understand the abstract concepts underlying programming tasks,

Education and Information Technologies

and apply logical frameworks to problem-solving (Garcia et al., 2022a, b) . The lack
of algorithmic thinking and logical reasoning skills can also impede students’ ability
to debug and optimize their code effectively, which can lead to persistent errors and
inefficient solutions. Graafsma et al. (2023) also found that logical reasoning has been
shown to predict academic success in computer programming courses. Unfortunately,
the absence of these fundamental programming skills at the earliest stage of their aca-
demic program poses a significant threat to their long-term success (Xie et al., 2019).
Students may find themselves struggling to tackle the more intricate and abstract
aspects of programming. As they face challenges in meeting course expectations and
in dealing with complex programming tasks, their confidence might decrease (Kovari
& Katona, 2023). This diminished confidence may lead them to question their deci-
sion to pursue programming-related studies.

From a practical standpoint, this finding illuminates what contributes to academic
failures and eventual dropout in programming education. Garcia and Revano (2021)
asserted that students who lack a firm grasp of theoretical understanding may strug-
gle with more advanced programming topics. This difficulty can result in students
facing increasing challenges as they progress through their coursework. Unfortu-
nately, it often translates into poor academic performance (Hota et al., 2023), which
can lead to a cycle of frustration and discouragement. This emotional response can
further hinder their learning process and motivation, exacerbating their struggles in
the field of programming. This assertion is supported by empirical evidence dem-
onstrating that fun plays a vital role in coding, as it has a positive and indirect effect
on learning (Tisza & Markopoulos, 2021). Furthermore, the absence of algorithmic
thinking (Lamagna, 2015) and logical reasoning (Barlow-Jones & van der West-
huizen, 2017; Graafsma et al., 2023) may present significant obstacles for students
when tackling real-world programming challenges. Without these fundamental
skills, students may find themselves struggling to effectively utilize their language
proficiency in practical scenarios. This finding becomes even more problematic
considering that individual-level analysis reveals that the majority of the program-
ming student population excels only in language proficiency. Unfortunately, there
is a significant difference between merely knowing a programming language and
being able to effectively use it, a skill that requires a mastery of both algorithmic
thinking and logical reasoning. Students who do not master these fundamental skills
often lack confidence in their programming abilities. This lack of self-assurance can
contribute to performance anxiety and the decision to drop out (Dirzyte et al., 2023;
Garcia, 2023). Recognizing their deficiencies in essential programming skills, some
students may opt to pursue alternative career paths.

When analyzing the student population separately by academic program, distinct
learning outcomes emerged between IT and CS programming students. Despite hav-
ing access to identical educational resources and programming curriculum, CS stu-
dents displayed superior mastery compared to their IT counterparts. This disparity
suggests that factors other than shared educational content contribute to these dif-
ferences. Unfortunately, there is a paucity of literature on this subject, and this study
represents the first to compare the programming skill mastery profiles of IT and CS
students. Future research should aim to identify the reasons behind these differences
to determine the precise interventions necessary to improve programming education.

 Education and Information Technologies

In this context, a potential explanation could be the curriculum. From a curricular
standpoint, CS programs often focus on theoretical foundations, algorithmic thinking,
and problem-solving skills, which are essential for understanding complex computing
concepts. Conversely, IT programs might place more emphasis on practical, applica-
tion-oriented skills. This divergence in curricular focus could result in CS students
developing a deeper understanding of computational theory and algorithms. In such
a scenario, it could be anticipated that a more pronounced delineation in skill mas-
tery profiles will manifest as students advance through their academic curriculum.
Consequently, longitudinal assessments are necessary to explain these developmental
trajectories in future research. The implication of this finding also underscores the
importance of continuous curriculum evaluation and the adoption of adaptive teach-
ing methods in programming education. By doing so, educators can ensure that stu-
dents not only gain comprehensive programming knowledge but also develop a well-
rounded set of skills essential for their future careers (Schnieder & Williams, 2022).
Overall, these differences underscore the need for tailored educational strategies that
cater to the unique strengths and weaknesses of each student group. Recognizing and
addressing these differences could lead to more effective and personalized program-
ming education, thereby optimizing learning outcomes for both IT and CS students.

The study needs to acknowledge limitations that can provide avenues for future
research. While failure and dropout rates are a significant motivation for this
research, the primary focus was to identify specific cognitive strengths and weak-
nesses of students in introductory programming courses. Linking these cognitive
profiles to actual dropout rates is essential for developing targeted interventions and
improving student retention strategies in programming courses. This connection,
however, requires a broader, more longitudinal approach that could be explored in
future research. Additionally, the study focused on specific cognitive attributes pre-
sent in the examination analyzed. However, there are other essential characteristics
that programming students should possess, such as debugging skills and mathemati-
cal abilities (Graafsma et al., 2023; Schnieder & Williams, 2022). Future research
should aim to include a broader range of cognitive attributes to provide a more com-
prehensive diagnostic profile of programming students. In addition, the assessment
used in this study was in a multiple-choice format. While multiple-choice questions
can effectively evaluate certain types of knowledge and skills, other assessment
approaches (e.g., project-based assessments, coding assignments, and peer reviews)
may be more suitable for capturing the full range of cognitive abilities required in
programming (Garcia, 2023; Nakayama et al., 2021). These alternative formats
could offer deeper insights into students’ practical skills and application of knowl-
edge in real-world scenarios. Lastly, the generalizability of the findings may be lim-
ited due to variations in curricula across different institutions. Different program-
ming courses may emphasize various aspects of programming skills, which could
affect students’ cognitive profiles and their development of specific abilities. Future
research should consider these curriculum differences to ensure a more comprehen-
sive understanding of programming education across diverse educational contexts.
Addressing these limitations in future studies can build upon the findings to create a
more holistic understanding of the factors influencing success and retention in pro-
gramming education.

Education and Information Technologies

6 Conclusion

Computer programmers are currently in high demand due to ongoing digitalization
and the increasing complexity of technological solutions across various industries.
It is imperative that education systems continuously develop a skilled workforce
capable of meeting the evolving demands of these sectors. While previous studies
have identified learning difficulties contributing to dropout rates among programming
students, the specific nature of these weaknesses has remained unclear. To address
this gap, this study employed a CDM approach to assess the skill mastery profiles
of programming students. The findings revealed that students exhibited proficiency
primarily in code tracing and language proficiency but lacked mastery in theoretical
understanding, logical reasoning, and algorithmic thinking. The student population
was predominantly categorized into three latent classes: those students proficient
in all areas except logical reasoning, those students proficient only in language
proficiency, and those students proficient in all assessed attributes. A comparison
between students based on their academic programs showed that CS students
generally outperformed IT students in logical reasoning, algorithmic thinking,
language proficiency, and theoretical understanding. Conversely, IT students
excelled better in code tracing. This pattern differed from the dominant latent
classes within each group, with CS students mostly mastering all attributes except
algorithmic thinking and IT students predominantly mastering language proficiency.
These findings highlight a notable discrepancy in mastery levels across various
programming skills, which has significant implications for curriculum development
and instructional strategies.

In conclusion, this study provides a critical first step in understanding the cognitive
skill profiles of introductory programming students. By systematically identifying
the specific areas where students excel and struggle, this research offers invaluable
insights that can be leveraged to enhance educational strategies and outcomes.
Programming instructors can use these insights to design targeted interventions
that address specific cognitive weaknesses, thereby improving student outcomes
and potentially reducing dropout rates. Furthermore, the implications of this study
extend beyond immediate educational settings. By highlighting the importance of
tailored educational strategies, this research underscores the need for continuous
adaptation and improvement in teaching practices to meet the dynamic requirements
of the tech industry. The insights gained from this study can inform policy decisions
and curriculum design at institutional and broader educational levels, which may
contribute to the development of a more competent and adaptable workforce. This
study also advances the field of educational research by demonstrating the utility and
effectiveness of CDM in providing actionable diagnostic feedback. The application of
CDM in this context not only enriches the existing body of literature on programming
education but also sets a precedent for its use in other educational domains. By
showcasing how CDM can uncover cognitive profiles, this research paves the
way for future studies to implement similar diagnostic approaches across various
disciplines. In essence, this study not only contributes to the immediate improvement
of programming education but also lays the groundwork for a more profound

 Education and Information Technologies

understanding of cognitive skill development and its implications. By bridging the
gap between cognitive diagnostics and practical educational strategies, this research
fosters a more supportive and effective learning environment.

Appendix

Appendix A. Validated Q-Matrix for the CCS0003 final examination

Item Attributes Item Attributes

TU LP LR AT CT TU LP LR AT CT

1 1 0 0 0 0 51 1 1 1 1 1
2 1 0 0 0 0 52 0 1 1 1 1
3 1 0 0 0 0 53 0 1 1 1 1
4 1 0 0 0 0 54 1 0 1 1 1
5 1 0 0 0 0 55 1 0 0 0 0
6 1 0 0 0 0 56 1 0 0 0 0
7 1 0 0 0 0 57 0 1 1 1 1
8 1 0 0 0 0 58 0 1 1 1 1
9 1 0 0 0 0 59 0 1 1 1 1
10 1 0 0 0 0 60 1 0 0 0 0
11 1 0 0 0 0 61 0 1 1 1 1
12 1 0 0 0 0 62 0 1 1 1 1
13 1 1 0 0 0 63 1 1 1 1 1
14 1 0 0 0 0 64 1 1 1 1 1
15 0 1 0 0 0 65 1 1 1 1 1
16 1 0 0 0 0 66 1 0 0 0 0
17 1 0 0 0 0 67 1 1 1 1 1
18 1 0 0 0 0 68 0 1 1 1 1
19 0 1 0 0 1 69 1 1 0 0 1
20 0 1 0 0 1 70 1 0 0 0 0
21 1 0 0 0 0 71 1 0 0 0 0
22 1 0 1 0 0 72 0 1 1 1 1
23 1 0 1 0 0 73 1 1 1 1 1
24 0 0 1 0 0 74 1 0 0 0 0
25 1 1 1 1 0 75 1 1 1 1 1
26 0 1 0 0 0 76 1 0 0 0 0
27 1 0 0 0 0 77 1 1 1 1 1
28 1 0 0 0 0 78 0 1 1 1 1
29 0 1 0 0 0 79 0 1 1 1 1
30 0 1 0 0 0 80 0 1 1 1 0
31 1 0 0 0 0 81 1 1 1 1 1
32 0 1 1 0 1 82 1 0 0 0 0
33 1 0 0 0 0 83 0 1 1 1 1

Education and Information Technologies

Item Attributes Item Attributes

TU LP LR AT CT TU LP LR AT CT

34 0 1 0 0 0 84 1 1 1 1 1
35 1 0 0 0 0 85 1 1 1 1 1
36 1 0 0 0 0 86 1 1 1 1 1
37 1 0 0 0 0 87 1 1 0 0 0
38 0 0 1 0 0 88 1 0 0 0 0
39 1 0 0 0 0 89 1 1 0 0 0
40 0 1 1 0 1 90 1 0 0 0 0
41 0 1 1 0 0 91 1 0 0 0 0
42 0 1 0 0 0 92 0 1 1 1 1
43 0 1 0 0 0 93 1 1 1 1 1
44 1 0 0 0 0 94 1 0 0 0 0
45 0 0 0 0 1 95 1 0 0 0 0
46 1 0 0 0 0 96 1 1 1 1 1
47 1 0 0 0 0 97 1 0 0 0 0
48 0 1 1 1 1 98 1 0 0 0 0
49 0 1 0 0 0 99 1 1 1 1 1
50 1 0 0 0 0 100 1 0 0 0 0

1 = attribute present; 0 = attribute absent; TK = Theoretical Understanding (68 items); LP = Language
Proficiency (48 items); LR = Logical Reasoning (37 items); AT = Algorithmic Thinking (30 items);
CT = Code Tracing (35 items)

Appendix B. Preliminary results of the absolute model fit indices

Model df M2 RMSEA2 (CI) SRMSR Max.z(r) Max.z(l)

G-DINA 4133 11,292.72 0.0548 (0.0536—0.0560) 0.0889 11.2436 11.2768
DINA 4819 19,455.88 0.0726 (0.0715—0.0736) 0.0835 13.6285 13.8752
DINO 4819 19,565.19 0.0728 (0.0718—0.0739) 0.0844 13.3964 13.6361
RRUM 4701 11,741.25 0.0509 (0.0498—0.0521) 0.0882 11.9138 11.9985
LLM 4701 12,973.44 0.0552 (0.0541—0.0564) 0.0834 10.7854 10.8180
ACDM 4701 11,324.77 0.0494 (0.0483—0.0506) 0.0883 11.3965 11.8593
RASCH 4159 13,151.21 0.0612 (0.0600—0.0624) 0.0848 9.5531 9.9198
1PL 4158 12,841.23 0.0602 (0.0590—0.0613) 0.0847 10.4605 10.5157
2PL 4154 12,982.16 0.0607 (0.0595—0.0619) 0.0837 10.1054 10.5014
MIXED 4786 16,532.49 0.0652 (0.0641—0.0663) 0.0873 13.0427 13.2494

df = Degrees of Freedom; CI = Confidence Interval; RMSEA = Root Mean Square Error of Approxima-
tion; SRMSR = Standardized Root Mean Square Residual; Max.z(r) = maximum z score for transformed
correlation; Max.z(l) = maximum z score for log odds ratio

Appendix A. (Continued)

 Education and Information Technologies

Author’s contribution Manuel B. Garcia is a professor of information technology and the founding direc-
tor of the Educational Innovation and Technology Hub (EdITH) at FEU Institute of Technology, Manila,
Philippines. He is a graduate of Doctor of Information Technology from the University of the East and
is presently a student of Doctor of Philosophy in Education at the University of the Philippines. His
interdisciplinary research interest includes topics that, individually or collectively, cover the disciplines
of education and information technology. He is a licensed professional teacher and a proud member of
the National Research Council of the Philippines – an attached agency to the country’s Department of
Science and Technology (DOST-NRCP). Dr. Garcia has been honored as the first-ever recipient of the
Ramon Dimacali Award for Information Technology and recognized among the World’s Top 2% Scien-
tists in the latest citation rankings by Elsevier.

Data availability The dataset supporting the conclusions of this study is publicly available in the Harvard
Dataverse repository at the following https:// doi. org/ 10. 7910/ DVN/ J4FGWN.

Declarations All procedures performed in studies involving human participants were in accordance with
the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.

Competing interests The author declares no conflict of interest.

References

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Adewumi, S. (2019). A systematic review of computational
thinking approach for programming education in higher education institutions. Proceedings of the
19th Koli Calling International Conference on Computing Education Research (pp 1–10). https://
doi. org/ 10. 1145/ 33645 10. 33645 21

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic
Control, 19(6), 716–723. https:// doi. org/ 10. 1109/ TAC. 1974. 11007 05

Angeli, C. (2022). The effects of scaffolded programming scripts on pre-service teachers’ computational
thinking: developing algorithmic thinking through programming robots. International Journal of
Child-Computer Interaction, 31, 1–20. https:// doi. org/ 10. 1016/j. ijcci. 2021. 100329

Asian Development Bank. (2022). Digital Jobs and Digital Skills: A Shifting Landscape in Asia and the Pacific.
Barlow-Jones, G., & van der Westhuizen, D. (2017). Problem solving as a predictor of programming per-

formance. ICT Education (pp 209–216). https:// doi. org/ 10. 1007/ 978-3- 319- 69670-6_ 14
Chandía, E., Sanhueza, T., Mansilla, A., Morales, H., Huencho, A., & Cerda, G. (2023). Nonparametric

cognitive diagnosis of profiles of mathematical knowledge of teacher education candidates. Current
Psychology, 42(36), 32498–32511. https:// doi. org/ 10. 1007/ s12144- 023- 04256-2

Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis
modeling. Journal of Educational Measurement, 50(2), 123–140. https:// doi. org/ 10. 1111/j. 1745- 3984.
2012. 00185.x

Davier, M. V., & Lee, Y.-S. (2019). Handbook of Diagnostic Classification Models: Models and
Model Extensions, Applications, Software Packages. UK: Springer. https:// doi. org/ 10. 1007/
978-3- 030- 05584-4

de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179–199. https://
doi. org/ 10. 1007/ s11336- 011- 9207-7

de la Torre, J., & Chiu, C.-Y. (2016). A General Method of Empirical Q-matrix Validation. Psycho-
metrika, 81(2), 253–273. https:// doi. org/ 10. 1007/ s11336- 015- 9467-8

de la Torre, J., & Lee, Y.-S. (2013). Evaluating the wald test for item-level comparison of saturated and
reduced models in cognitive diagnosis. Journal of Educational Measurement, 50(4), 355–373.
https:// doi. org/ 10. 1111/ jedm. 12022

de la Torre, J., & Minchen, N. (2014). Cognitively diagnostic assessments and the cognitive diagnosis
model framework. Psicología Educativa, 20, 89–97. https:// doi. org/ 10. 1016/j. pse. 2014. 11. 001

https://doi.org/10.7910/DVN/J4FGWN
https://doi.org/10.1145/3364510.3364521
https://doi.org/10.1145/3364510.3364521
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/j.ijcci.2021.100329
https://doi.org/10.1007/978-3-319-69670-6_14
https://doi.org/10.1007/s12144-023-04256-2
https://doi.org/10.1111/j.1745-3984.2012.00185.x
https://doi.org/10.1111/j.1745-3984.2012.00185.x
https://doi.org/10.1007/978-3-030-05584-4
https://doi.org/10.1007/978-3-030-05584-4
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-015-9467-8
https://doi.org/10.1111/jedm.12022
https://doi.org/10.1016/j.pse.2014.11.001

Education and Information Technologies

Delafontaine, J., Chen, C., Park, J. Y., & Van den Noortgate, W. (2022). Using country-specific q-matri-
ces for cognitive diagnostic assessments with international large-scale data. Large-Scale Assess-
ments in Education, 10(1), 1–36. https:// doi. org/ 10. 1186/ s40536- 022- 00138-4

Dirzyte, A., Perminas, A., Kaminskis, L., Žebrauskas, G., Sederevičiūtė-Pačiauskienė, Ž, Šliogerienė, J.,
Suchanova, J., Rimašiūtė-Knabikienė, R., Patapas, A., & Gajdosikiene, I. (2023). Factors contrib-
uting to dropping out of adults’ programming E-learning. Heliyon, 9(12), 1–16. https:// doi. org/ 10.
1016/j. heliy on. 2023. e22113

Djurdjevic-Pahl, A., Pahl, C., Fronza, I., & El Ioini, N. (2017). A pathway into computational thinking
in primary Schools. Emerging Technologies for Education (pp 165–175). https:// doi. org/ 10. 1007/
978-3- 319- 52836-6_ 19

Effatpanah, F., Baghaei, P., & Boori, A. A. (2019). Diagnosing EFL Learners’ Writing Ability: A Diag-
nostic Classification Modeling Analysis. Language Testing in Asia, 9(1), 1–23. https:// doi. org/ 10.
1186/ s40468- 019- 0090-y

European Labour Authority. (2023). Report on Labour Shortages and Surpluses – 2022. Publications
Office of the European Union. https:// doi. org/ 10. 2883/ 50704

Garcia, M. B. (2021). Cooperative Learning in Computer Programming: A Quasi-Experimental Evalua-
tion of Jigsaw Teaching Strategy with Novice Programmers. Education and Information Technolo-
gies, 26(4), 4839–4856. https:// doi. org/ 10. 1007/ s10639- 021- 10502-6

Garcia, M. B. (2023). Facilitating Group Learning Using an Apprenticeship Model: Which Master is
More Effective in Programming Instruction? Journal of Educational Computing Research, 61(6),
1207–1231. https:// doi. org/ 10. 1177/ 07356 33123 11703 82

Garcia, M. B., & Revano, T. F. (2021). Assessing the role of python programming gamified course on Stu-
dents’ knowledge, skills performance, attitude, and self-efficacy. 2021 IEEE 13th International Confer-
ence on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environ-
ment, and Management (HNICEM) (pp 1–5). https:// doi. org/ 10. 1109/ HNICE M54116. 2021. 97319 35

Garcia, M. B., Enriquez, J. B. R., Adao, R. T., & Happonen, A. (2022). "Hey IDE, display hello World":
Integrating a voice coding approach in hands-on computer programming activities. 2022 IEEE 14th
International Conference on Humanoid, Nanotechnology, Information Technology, Communication
and Control, Environment, and Management (HNICEM) (pp 1–6). https:// doi. org/ 10. 1109/ HNICE
M57413. 2022. 10109 412

Garcia, M. B., Juanatas, I. C., & Juanatas, R. A. (2022). TikTok as a knowledge source for programming
Learners: A new form of nanolearning? 2022 10th International Conference on Information and
Education Technology (ICIET) (pp 219–223). https:// doi. org/ 10. 1109/ ICIET 55102. 2022. 97790 04

Garcia, M. B., Revano, T. F., Maaliw, R. R., Lagrazon, P. G. G., Valderama, A. M. C., Happonen, A.,
Qureshi, B., & Yilmaz, R. (2023). Exploring Student preference between aI-powered chatGPT and
Human-curated stack overflow in resolving programming problems and queries. 2023 IEEE 15th
International Conference on Humanoid, Nanotechnology, Information Technology, Communica-
tion and Control, Environment, and Management (HNICEM) (pp 1–6). https:// doi. org/ 10. 1109/
HNICE M60674. 2023. 10589 162

Graafsma, I. L., Robidoux, S., Nickels, L., Roberts, M., Polito, V., Zhu, J. D., & Marinus, E. (2023). The
cognition of programming: logical reasoning, algebra and vocabulary skills predict programming
performance following an introductory computing course. Journal of Cognitive Psychology, 35(3),
364–381. https:// doi. org/ 10. 1080/ 20445 911. 2023. 21660 54

Guo, P. J. (2018). Non-native English speakers learning computer programming: Barriers, desires, and
design opportunities. Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. (pp 1–4). https:// doi. org/ 10. 1145/ 31735 74. 31739 70

Hartz, S. M. (2002). A Bayesian Framework for the Unified Model for Assessing Cognitive Abilities:
Blending Theory with Practicality. Dissertation Abstracts International: Section B: The Sciences and
Engineering, 63(2-B), 864. https:// psycn et. apa. org/ record/ 2002- 95016- 234. Accessed 12 Feb 2024.

Helm, C., Warwas, J., & Schirmer, H. (2022). Cognitive diagnosis models of students’ skill profiles as a
basis for adaptive teaching: an example from introductory accounting classes. Empirical Research
in Vocational Education and Training, 14(1), 1–30. https:// doi. org/ 10. 1186/ s40461- 022- 00137-3

Hota, C. P. P. K., Asanambigai, V., & Lakshmi, D. (2023). Predicting academic grades of Students in
computer programming using classification algorithms. 2023 9th International Conference on
Advanced Computing and Communication Systems (ICACCS) (pp 607–612). https:// doi. org/ 10.
1109/ ICACC S57279. 2023. 10112 996

International Labour Organization. (2020). Skills Shortages and Labour Migration in the Field of Infor-
mation and Communication Technology in Canada, China, Germany and Singapore. https:// www.

https://doi.org/10.1186/s40536-022-00138-4
https://doi.org/10.1016/j.heliyon.2023.e22113
https://doi.org/10.1016/j.heliyon.2023.e22113
https://doi.org/10.1007/978-3-319-52836-6_19
https://doi.org/10.1007/978-3-319-52836-6_19
https://doi.org/10.1186/s40468-019-0090-y
https://doi.org/10.1186/s40468-019-0090-y
https://doi.org/10.2883/50704
https://doi.org/10.1007/s10639-021-10502-6
https://doi.org/10.1177/07356331231170382
https://doi.org/10.1109/HNICEM54116.2021.9731935
https://doi.org/10.1109/HNICEM57413.2022.10109412
https://doi.org/10.1109/HNICEM57413.2022.10109412
https://doi.org/10.1109/ICIET55102.2022.9779004
https://doi.org/10.1109/HNICEM60674.2023.10589162
https://doi.org/10.1109/HNICEM60674.2023.10589162
https://doi.org/10.1080/20445911.2023.2166054
https://doi.org/10.1145/3173574.3173970
https://psycnet.apa.org/record/2002-95016-234
https://doi.org/10.1186/s40461-022-00137-3
https://doi.org/10.1109/ICACCS57279.2023.10112996
https://doi.org/10.1109/ICACCS57279.2023.10112996
https://www.ilo.org/wcmsp5/groups/public/---ed_dialogue/---sector/documents/publication/wcms_755663.pdf

 Education and Information Technologies

ilo. org/ wcmsp5/ groups/ publi c/--- ed_ dialo gue/--- sector/ docum ents/ publi cation/ wcms_ 755663. pdf.
Accessed 14 May 2024.

International Labour Organization. (2021). Changing Demand for Skills in Digital Economies and Socie-
ties: Literature Review and Case Studies from Low- and Middle-Income Countries. https:// www.
ilo. org/ wcmsp5/ groups/ publi c/--- ed_ emp/--- ifp_ skills/ docum ents/ publi cation/ wcms_ 831372.
pdf. Accessed 14 May 2024.

Jang, E. E., Dunlop, M., Park, G., & van der Boom, E. H. (2015). How do young students with different
profiles of reading skill mastery, perceived ability, and goal orientation respond to holistic diagnos-
tic feedback? Language Testing, 32(3), 359–383. https:// doi. org/ 10. 1177/ 02655 32215 570924

Junker, B. W., & Sijtsma, K. (2001). Cognitive Assessment Models with Few Assumptions, and Con-
nections with Nonparametric Item Response Theory. Applied Psychological Measurement, 25(3),
258–272. https:// doi. org/ 10. 1177/ 01466 21012 20320 64

Kiss, G., & Arki, Z. (2017). The Influence of Game-based Programming Education on the Algorithmic
Thinking. Procedia - Social and Behavioral Sciences, 237, 613–617. https:// doi. org/ 10. 1016/j. sbspro.
2017. 02. 020

Kovari, A., & Katona, J. (2023). Effect of software development course on programming self-efficacy. Educa-
tion and Information Technologies, 28(9), 10937–10963. https:// doi. org/ 10. 1007/ s10639- 023- 11617-8

Kumar, A. N. (2015). Solving code-tracing problems and its effect on code-writing skills pertaining to
program semantics. Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education (pp 314–319). https:// doi. org/ 10. 1145/ 27290 94. 27425 87

Lamagna, E. A. (2015). Algorithmic Thinking Unplugged. Journal of Computing Sciences in Colleges,
30(6), 45–52. https:// dl. acm. org/ doi/ 10. 5555/ 27530 24. 27530 36

Lee, Y.-S., de la Torre, J., & Park, Y. S. (2012). Relationships between cognitive diagnosis, CTT, and IRT
Indices: An empirical investigation. Asia Pacific Education Review, 13(2), 333–345. https:// doi. org/
10. 1007/ s12564- 011- 9196-3

Li, T., & Traynor, A. (2022). The use of cognitive diagnostic modeling in the assessment of computa-
tional thinking. AERA Open, 8, 23328584221081256. https:// doi. org/ 10. 1177/ 23328 58422 10812 56

Li, H., Hunter, C. V., & Lei, P.-W. (2015). The selection of cognitive diagnostic models for a reading
comprehension test. Language Testing, 33(3), 391–409. https:// doi. org/ 10. 1177/ 02655 32215 590848

Li, Y., Zhen, M., & Liu, J. (2021). Validating a reading assessment within the cognitive diagnos-
tic assessment framework: q-matrix construction and model comparisons for different primary
grades. Frontiers in Psychology, 12, 1–13. https:// doi. org/ 10. 3389/ fpsyg. 2021. 786612

Lira, C. D., Wong, R., & Adesope, O. (2022). A systematic review on the effectiveness of program-
ming camps on middle School Students’ programming knowledge and attitudes of computing.
Journal of Computing Sciences in Colleges, 38(1), 89–98. https:// dl. acm. org/ doi/ abs/ 10. 5555/
35756 18. 35756 27

Liu, Y., Zhang, T., Wang, X., Yu, G., & Li, T. (2023). New development of cognitive diagnosis mod-
els. Frontiers of Computer Science, 17(1), 1–13. https:// doi. org/ 10. 1007/ s11704- 022- 1128-3

Ma, W., & de la Torre, J. (2020a). An Empirical Q-Matrix Validation Method for the Sequential Gen-
eralized DINA Model. British Journal of Mathematical and Statistical Psychology, 73(1), 142–
163. https:// doi. org/ 10. 1111/ bmsp. 12156

Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of
Statistical Software, 93(14), 1–26. https:// doi. org/ 10. 18637/ jss. v093. i14

Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection, and attribute
classification. Applied Psychological Measurement, 40(3), 200–217. https:// doi. org/ 10. 1177/
01466 21615 621717

Macrides, E., Miliou, O., & Angeli, C. (2022). Programming in early childhood education: a system-
atic review. International Journal of Child-Computer Interaction, 32, 1–17. https:// doi. org/ 10.
1016/j. ijcci. 2021. 100396

Maris, E. (1999). Estimating Multiple Classification Latent Class Models. Psychometrika, 64(2), 187–
212. https:// doi. org/ 10. 1007/ BF022 94535

Meng, Y., Wang, Y., & Zhao, N. (2023). Cognitive Diagnostic Assessment of EFL Learners’ Listen-
ing Barriers Through Incorrect Responses. Frontiers in Psychology, 14, 1–11. https:// doi. org/ 10.
3389/ fpsyg. 2023. 11261 06

Nakayama, M., Uto, M., Temperini, M., & Sciarrone, F. (2021). Estimating ability of programming
skills using IRT based peer assessments. 2021 19th International Conference on Information Tech-
nology Based Higher Education and Training (ITHET) (pp 1–6). https:// doi. org/ 10. 1109/ ITHET
50392. 2021. 97595 71

https://www.ilo.org/wcmsp5/groups/public/---ed_dialogue/---sector/documents/publication/wcms_755663.pdf
https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---ifp_skills/documents/publication/wcms_831372.pdf
https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---ifp_skills/documents/publication/wcms_831372.pdf
https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---ifp_skills/documents/publication/wcms_831372.pdf
https://doi.org/10.1177/0265532215570924
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1016/j.sbspro.2017.02.020
https://doi.org/10.1016/j.sbspro.2017.02.020
https://doi.org/10.1007/s10639-023-11617-8
https://doi.org/10.1145/2729094.2742587
https://dl.acm.org/doi/10.5555/2753024.2753036
https://doi.org/10.1007/s12564-011-9196-3
https://doi.org/10.1007/s12564-011-9196-3
https://doi.org/10.1177/23328584221081256
https://doi.org/10.1177/0265532215590848
https://doi.org/10.3389/fpsyg.2021.786612
https://dl.acm.org/doi/abs/10.5555/3575618.3575627
https://dl.acm.org/doi/abs/10.5555/3575618.3575627
https://doi.org/10.1007/s11704-022-1128-3
https://doi.org/10.1111/bmsp.12156
https://doi.org/10.18637/jss.v093.i14
https://doi.org/10.1177/0146621615621717
https://doi.org/10.1177/0146621615621717
https://doi.org/10.1016/j.ijcci.2021.100396
https://doi.org/10.1016/j.ijcci.2021.100396
https://doi.org/10.1007/BF02294535
https://doi.org/10.3389/fpsyg.2023.1126106
https://doi.org/10.3389/fpsyg.2023.1126106
https://doi.org/10.1109/ITHET50392.2021.9759571
https://doi.org/10.1109/ITHET50392.2021.9759571

Education and Information Technologies

Ou, Q., Liang, W., He, Z., Liu, X., Yang, R., & Wu, X. (2023). Investigation and analysis of the cur-
rent situation of programming education in primary and secondary schools. Heliyon, 9(4), 1–16.
https:// doi. org/ 10. 1016/j. heliy on. 2023. e15530

Paulsen, J., & Valdivia, D. S. (2022). Examining cognitive diagnostic modeling in classroom assess-
ment conditions. The Journal of Experimental Education, 90(4), 916–933. https:// doi. org/ 10.
1080/ 00220 973. 2021. 18910 08

Qayyum, N. u., Seman, M. S. A., Shah, A., Qureshi, M. S., & Raza, A. (2018). A review of program-
ming code assessment approaches. 2018 IEEE 5th International Conference on Engineering Tech-
nologies and Applied Sciences (ICETAS) (pp 1–5). https:// doi. org/ 10. 1109/ ICETAS. 2018. 86292 21

Ravand, H., & Robitzsch, A. (2018). Cognitive Diagnostic Model of Best Choice: A Study of Read-
ing Comprehension. Educational Psychology, 38(10), 1255–1277. https:// doi. org/ 10. 1080/ 01443
410. 2018. 14895 24

Rupp, A. A., & Templin, J. L. (2008). Unique characteristics of diagnostic classification models: a
comprehensive review of the current state-of-the-art. Measurement: Interdisciplinary Research
and Perspectives, 6(4), 219–262. https:// doi. org/ 10. 1080/ 15366 36080 24908 66

Russell, S. (2022). Automated code tracing exercises for CS1. Proceedings of 6th Conference on
Computing Education Practice (pp 13–16). https:// doi. org/ 10. 1145/ 34983 43. 34983 47

Schnieder, M., & Williams, S. (2022). How to assess programming skills: review and analysis. IEEE Ger-
man Education Conference (GeCon), 2022, 1–7. https:// doi. org/ 10. 1109/ GeCon 55699. 2022. 99427 89

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
https:// doi. org/ 10. 1214/ aos/ 11763 44136

Shi, Q., Ma, W., Robitzsch, A., Sorrel, M. A., & Man, K. (2021). Cognitively diagnostic analysis
using the G-DINA model in R. Psych, 3(4), 812–835. https:// doi. org/ 10. 3390/ psych 30400 52

Stankov, E., Jovanov, M., & MadevskaBogdanova, A. (2023). Smart generation of code tracing ques-
tions for assessment in introductory programming. Computer Applications in Engineering Edu-
cation, 31(1), 5–25. https:// doi. org/ 10. 1002/ cae. 22567

Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory.
Journal of Educational Measurement, 20(4), 345–354. https:// doi. org/ 10. 1111/j. 1745- 3984. 1983. tb002 12.x

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diag-
nosis models. Psychological Methods, 11(3), 287–305. https:// doi. org/ 10. 1037/ 1082- 989X. 11.3. 287

Thuné, M., & Eckerdal, A. (2019). Analysis of students’ learning of computer programming in a com-
puter laboratory context. European Journal of Engineering Education, 44(5), 769–786. https:// doi.
org/ 10. 1080/ 03043 797. 2018. 15446 09

Tisza, G., & Markopoulos, P. (2021). Understanding the role of fun in learning to code. International
Journal of Child-Computer Interaction, 28, 1–10. https:// doi. org/ 10. 1016/j. ijcci. 2021. 100270

Tsukamoto, H., Oomori, Y., Nagumo, H., Takemura, Y., Monden, A., & Matsumoto, K. i. (2017). Evaluat-
ing algorithmic thinking ability of primary Schoolchildren who learn computer programming. 2017
IEEE Frontiers in Education Conference (FIE) (pp 1–8). https:// doi. org/ 10. 1109/ FIE. 2017. 81906 09

Wu, X., Sun, S., Xu, T., & Wang, A. (2024). Research on the selection of cognitive diagnosis model
from the perspective of experts. Current Psychology, 43(15), 13802–13810. https:// doi. org/ 10. 1007/
s12144- 023- 05438-8

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H., Hwa, L., Li, M., &
Ko, A. J. (2019). A theory of instruction for introductory programming skills. Computer Science
Education, 29(2–3), 205–253. https:// doi. org/ 10. 1080/ 08993 408. 2019. 15652 35

Zhang, Y., Jin, Y., Xiong, Z., Leung, S. O., Chen, G., Li, N., & Li, B. (2022). Personalized assessment:
applying higher-order cognitive diagnosis models in secondary mathematics. Asian Journal for
Mathematics Education, 1(4), 455–474. https:// doi. org/ 10. 1177/ 27527 26322 11363 01

Zhang, Y., Paquette, L., Pinto, J. D., & Fan, A. X. (2023). Utilizing programming traces to explore and
model the dimensions of novices’ code-writing skill. Computer Applications in Engineering Educa-
tion, 31(4), 1041–1058. https:// doi. org/ 10. 1002/ cae. 22622

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1016/j.heliyon.2023.e15530
https://doi.org/10.1080/00220973.2021.1891008
https://doi.org/10.1080/00220973.2021.1891008
https://doi.org/10.1109/ICETAS.2018.8629221
https://doi.org/10.1080/01443410.2018.1489524
https://doi.org/10.1080/01443410.2018.1489524
https://doi.org/10.1080/15366360802490866
https://doi.org/10.1145/3498343.3498347
https://doi.org/10.1109/GeCon55699.2022.9942789
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.3390/psych3040052
https://doi.org/10.1002/cae.22567
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1080/03043797.2018.1544609
https://doi.org/10.1080/03043797.2018.1544609
https://doi.org/10.1016/j.ijcci.2021.100270
https://doi.org/10.1109/FIE.2017.8190609
https://doi.org/10.1007/s12144-023-05438-8
https://doi.org/10.1007/s12144-023-05438-8
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1177/27527263221136301
https://doi.org/10.1002/cae.22622

	Profiling the skill mastery of introductory programming students: A cognitive diagnostic modeling approach
	Abstract
	1 Introduction
	2 Background of the study
	2.1 Cognitive diagnosis modeling
	2.2 Foundational models in cognitive diagnosis

	3 Methods
	3.1 Study setting and participants
	3.2 Research instrument and data collection
	3.3 Q-matrix
	3.4 Data analysis

	4 Results
	4.1 RQ1: Which cognitive diagnosis model most adequately fits the collected data?
	4.2 RQ2: What are the attributes mastered by students at the grade and individual levels?
	4.3 RQ3: How do these mastery profiles vary between cs and it students?

	5 Discussion
	6 Conclusion
	Appendix
	References

